Browse > Article
http://dx.doi.org/10.11001/jksww.2012.26.1.141

Arsenic removal from artificial arsenic water using CaAl-monosulfate and CaAl-ettringite  

Shim, Jae-Ho (한양대학교 건설환경공학과)
Kim, Ki-Baek (한양대학교 건설환경공학과)
Choi, Won-Ho (한양대학교 건설환경공학과)
Park, Joo-Yang (한양대학교 건설환경공학과)
Publication Information
Journal of Korean Society of Water and Wastewater / v.26, no.1, 2012 , pp. 141-148 More about this Journal
Abstract
The objective of this study is to remove arsenate from artificially contaminated wastewater using CaAl-ettringite and CaAl-monosulfate which were synthesized in laboratory. The study was carried on the basis of solidification/stabilization of waste using cement. Monosulfate and ettringite are constituents of cement paste. The CaAl-ettringite has a chemical formula of $Ca_6Al_2O_6(SO_4)_3{\cdot}32H_2O$ and has a needle like morphology. Whereas CaAl-monosulfate $Ca_4Al_2O_6(SO_4){\cdot}12H_2O$ has layered double hydroxide structure (LDH) in which the mainlayer consists of Ca and Al and S as interlayer. Ettringite and monosulfate were synthesized by reaction of tricalcium aluminate and gypsum and hydrating this mixture at elevated temperature. The synthesized mineral were characterized by PXRD and FESEM to ensure purity. It was found that concentrations of As(V) in contaminated water were reduced from initial concentration of 1.335 mmol/L to 0.054 mmol/L and 0.300 mmol/L by CaAl-monosulfate and CaAl-ettringite respectively. The post experimental results of PXRD and FESEM analysis indicate that arsenate removal was by ion exchange.
Keywords
arsenate removal; layered double hydroxides; monosulfate; ettringite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., Imam, M. B., Kgan, A. A. and Sracek, O. (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangledesh: an overview. Appl. Geochem., 19, pp.181-200   DOI
2 Balonis, M. and Glasser, F. P. (2009) The density of cement phases, Cem. Concr. Res., 39(9), pp.733-739.   DOI
3 Baur, I., Keller P., Mavrocordatos D., Wehrli, B., Johnson, C. A. (2004) Dissolution-precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate, Cem. Concr. Res., 34(2), pp.341-348.   DOI
4 Cappuyns, V., Van Herreweghe, S., Swennen. R., Ottenburgs, R. and Deckers, J. (2002) Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium), Sci. Tot. Environ., 295, pp.217-240   DOI
5 Cavani, F., Trifiro, F. and Vaccari, A. (1991) Hydrotalcite-type anionic clays, Preparation, properties and applications, Catal. Today, 11(2), pp.173-301.   DOI
6 Charlet, L., Ansari, A. A., Lespagnol, G. and Musso, M. (2001) Risk of arseic transfer to a semi-confined aquifer and the effect of water level fluctuation in North Mortagne, france at a former industrial site, Sci. Tot. Environ., 277, pp.133-147   DOI
7 Christensen, A. N., Jensen, T. R. and Hanson, J. C. (2004) Formation of ettringite, $Ca_{6}Al_{2}(SO_{4})_{3}(OH)_{12}{\cdot}26H_{2}O$, AFt, and monosulfate, $Ca_{4}Al_{4}O_{6}(SO_{4}){\cdot}_{14}H_{2}O$, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide −calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction, J. Solid State Chem., 177(6), pp.1944-1951.   DOI
8 Clark, B. A., and Brown, P. W. (1999) The formation of calcium sulfoaluminate hydrate compounds: Part I, J. Am. Ceram. Soc., 82(10), pp.2900-2905.
9 Francesconi, K., Visoottiviseth P., Sridokchn W., and Goessler W., (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic contaminated soil, The Sci. of the Total Environ., 284, pp.27-35   DOI
10 Gao, S., and Burau, R. G. (1997) Environmental factors affecting rate of arsine evolution from and mineralization of arsenicals in soil, J. Environ. Qual., 26, pp.753-763
11 Haron, M. J., Wan Yunus, W. M., Yong, N. L., and Tokunaga, S., (1999) Sorption of arsenate and arsenite anions by iron(III)-poly (hydroxamic acid) complex, Chemosphere, 39, pp.2459-2466   DOI
12 Juillot, F., Ildelfonse, Ph., Morin, G., Calas, G., de Kersabies, A. M. and Benedetti, M. (1999) Remobilization of arsenic from buried wastes at an industrial site: mineralogical and geochemical control. Appl. Geochem., 14. pp.1031-1048   DOI
13 Kang, W. H., Kim, E. I. and Park, J. Y. (2007) Fluoride removal capacity of cement paste, Desalination, 202(1-3), pp.38-44.   DOI
14 Matschei, T., Lothenbach, B., Glasser, F. P., (2007) The AFM phase in Portland cement, Cement and Concrete Research, 37, pp.118-130   DOI
15 Merlini, M., Artioli, G., Cerulli, T., Cella, F. and Bravo, A., (2008) Tricalcium aluminate hydration in additivated systems. A crystallographic study by SR-XRPD, Cement and Concrete Research, 38, pp.477-486   DOI
16 Minard, H., Garrault, S., Regnaud, L. and Nonat, A. (2007) Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum, Cem. Concr. Res., 37(10), pp.1418-1426.   DOI
17 Moore, A. E. and Taylor, H. F. W. (1970) Crystal structure of ettringite, Acta Crystallogr B Struct. Sci., 26, pp.386-393   DOI
18 Mosalamy, F. H., Shater, M. A., El-Didamony, H. and El-Sheikh, R. (1984) Hydration mechanism of tricalcium aluminate with lime at 1:1 mole ratio at low water/solid ratio and in suspension, Thermochim. Acta, 74(1-3), pp.123-129.   DOI
19 Park, J. Y., Byun, H. J., Choi, W. H. and Kang W. H. (2008) Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater, Chemosphere, 70(8), pp.1429-1437.   DOI
20 Palmer, S. J., Frost, R. L. and Nguyen, T. (2009) Hydrotalcites and their role in coordination of anions in Bayer liquors: Anion binding in layered double hydroxides, Coord. Chem. Rev., 253(1-2), pp.250-267.   DOI
21 Pollmann, H. (1989) Solid solution in the system $3CaO{\cdot}Al_{2}O_{3}{\cdot}CaSO_{4}{\cdot}aq-3CaO{\cdot}Al_{2}O_{3}{\cdot}Ca(OH)_{2}-aq-H_{2}O $ at $25^{\circ}C$, $45^{\circ}C$, $60^{\circ}C$, Neuse Jahrb. Mineral. Abhandl, 161, pp.27-40
22 Rives, V. (2002) Characterisation of layered double hydroxides and their decomposition products, Mater. Chem. Phys., 75(1-3), pp.19-25.   DOI
23 Sadiq, M., Zaidi, T. H. and Mian, A. A. (1983) Environmental behavior of arsenic in soils: theoretical, Water, Air, and Soil Pollution, 20(4), pp.369-377
24 Satish C. B. Myneni, Samuel J. Traina, Terry J. Logan, Glenn A. Wayshunas (1997) Oxyanion behavior in alkaline environments: sorption and desorption of arsenate in ettringite, Environmental Science & Technology, 31(6), pp.1761-1768   DOI
25 Su, C., and Puls, R. W. (2001) Arsenate and arsenite removal by zerovalent iron : Kinetics, redox transformation, and implications for in situ groundwater remediation, Environ., Sci. Technol., 35, pp.1487-1492   DOI
26 Tu, C., and Ma, L. Q. (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake, J. Environ. Qual., 31, pp.641-647   DOI