• 제목/요약/키워드: cement stabilization

검색결과 138건 처리시간 0.026초

카올린-시멘트 혼합재료의 공학적 특성 (Mechanical Characteristics of Kaolin-cement Mixture)

  • Lee, Kyu-Hwan;Lee, Song;Yi, Chang-Tok
    • 한국지반공학회논문집
    • /
    • 제18권1호
    • /
    • pp.113-125
    • /
    • 2002
  • 연약 지반개량을 위한 심층혼합처리 공법의 사용은 점차로 증가 추세에 있으며 특히, 일본과 해안가에 인접한 동남아 국가는 물론 스칸디나비아지역에서도 보편화된 개량공법으로 각광을 받고 있다. 시멘트는 지반의 강도를 증가시키고 압축성을 감소시키는 역할을 한다. 따라서 심도가 깊은 퇴적지반이나 해안지역에서 지반의 지지력 증가나 압밀침하를 감소시키기 위해 시멘트를 개량재료로 사용할 수가 있다. 연약지반 처리를 위한 고화제로서 시멘트의 사용이 증가하고 있음에도 불구하고 이에 대한 응력-변형특성이나 혼합처리 흙의 구조적인 특성 등의 역학적인 거동특성을 명확하게 파악하지 못하고 있다. 본 연구에서는 시멘트 고화처리 흙의 역학적 성질을 파악하기 위해 카올린을 이용하여 최대 10%의 시멘트를 첨가하여 7일에서 112일가지 양생기간을 변화시켜 삼축압축시험, 일축압축시험, 등방압밀 및 표준압밀시험등을 수행하였으며 이에 따른 시멘트 고화처리 흙의 역학적인 특성을 파악하고자 하였다. 또한 혼합토의 시료 제조 및 양생방법등 일련의 시험과정에 대한 절차 및 방법에 대하여 기술하였다.

하수슬러지 소각재와 무기바인더를 이용한 응용 블록 개발 II (Development of Application Block Using Geobond and Ash from Sewage Sludge Incinerator II)

  • 이현주
    • 대한환경공학회지
    • /
    • 제37권7호
    • /
    • pp.412-417
    • /
    • 2015
  • 본 연구는 하수처리장에서 발생하는 하수슬러지 소각재와 Geobond를 이용한 응용 블록의 개발을 위하여 수행하였다. 실험은 무소성 공정으로 진행하였으며, Sewage Sludge Ash (SSA)를 Geobond(무기바인더)와 특수시멘트인 초조강 시멘트 마이크로 시멘트, 모래 등의 바인더를 혼합한 각각의 페이스트 시편을 성형 후 건조 및 양생과정을 거친 시편을 단기 압축강도를 측정한 후 28일 장기 양생한 결과 압축 강도가 64.6 MPa로 발현하였다. 이는 KS기준치 22.54 MPa ($229.7kg/cm^2$)을 훨씬 상회하는 고강도의 압축강도를 나타내었다. 하수슬러지 소각재(SSA) 첨가율은 각 바인더 별 약 10~40%까지 혼합 가능한 것으로 나타났다. 따라서 SSA를 무기바인더인 Geobond와 특수시멘트(HESPC, MC)의 대체 물질로의 사용이 가능함을 입증하였다.

Solidification/Stabilization of Dyeing Sludge Treated by Fenton Reagent Using Blast Furnace Slag and Fly Ash

  • Lee, Sookoo;Kim, Sebum
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.453-458
    • /
    • 2001
  • This study was performed to reuse the dyeing wastewater sludge treated by Fenton process through the solidification/stabilization technique. To solidify the dyeing sludge the industrial by-products such as blast furnace slag, fly ash and waste sand with cement were used. The laboratory scale and pilot scale test were conducted at room temperature to make construction brick which has high compressive strength and low leaching of heavy metals. The experimental results showed that blast furnace slag and fly ash could be used instead of cement and the products satisfied the regulation of Korean Standards. The blast furnace slag increased the compressive strength and the optimum ratio of slag/dyeing sludge on dry basis was found 0.4. The solidifying agent of SB series could increase rapidly the compressive strength and the optimum ratio of solidifying agent/sludge on dry basis was 0.26 at which the strength was two times compared with non-added condition. The portion of waste and industrial by-products in matrix was over 80%. From the pilot test the optimum pressure in molding was 100kg/$\textrm{cm}^2$ at which the compressive strength was over 100kg/$\textrm{cm}^2$. And the strength increased continuously to 160kg/$\textrm{cm}^2$ until 120 days curing time due to pozzolanic reaction. When SB-20 as a solidifying agent was used, the unconfined compressive strength of dyeing sludge could be obtained 110kg/$\textrm{cm}^2$ which satisfied the regulation of cement brick in Korea Standard(KS).

  • PDF

다양한 합성조건에서 얻어진 멜라민계 고유동화제가 함유된 시멘트의 물리적 유동특성 (The Physical Fluidity Properties of Cement Containing Melamine-type Superplasticizer Obtained with Various Synthetic Conditions)

  • 윤성원;이범재
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.815-821
    • /
    • 2005
  • 현재 콘크리트 산업에서 주로 사용되고 있는 3가지 화학 혼화제로서 변경 리그닌계(LS), 나프탈렌계(SNF) 및 멜라민계(SMF) 혼화제가 널리 사용되고 있다. 본 연구에서는 SMF계 고유동화제의 합성과정을 수산화메틸화 반응(Hydroxymethylation)-술폰화 반응(Sulfonation)-중합(Polymerization)-중화(Neutralization) 및 안정화(Stabilization)의 4단계로 나누어 반응을 진행시키면서 멜라민과 포르말린의 몰비를 변화시키고, 반응 3단계 중합과정에서 산촉매의 종류와 양을 조절하면서 시멘트용 고유동화제를 합성하였다. 다양한 합성조건에서 합성된 SMF계 고유동화제를 시멘트 모르타르 및 페이스트에 적용하여 작업성, 슬럼프 손실 및 압축 강도 등의 물리적 특성을 비교하였고, SEM image를 통하여 수화물 형태를 관찰하였다. 실험결과 SMF 고유동화제의 축합물 구조특성이 시멘트의 유동화 특성에 큰 영향을 주었다.

CO2 sequestration and heavy metal stabilization by carbonation process in bottom ash samples from coal power plant

  • Ramakrishna., CH;Thriveni., T;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제26권4호
    • /
    • pp.74-83
    • /
    • 2017
  • Coal-fired power plants supply roughly 50 percent of the nation's electricity but produce a disproportionate share of electric utility-related air pollution. Coal combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash and fly ash residues. These disposal coal ash residues are however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation process has been shown to have a potential for improving the chemical stability and leaching behavior of bottom ash residues. The aim of this work was to quantify the volume of $CO_2$ that could be sequestrated with a view to reducing greenhouse gas emissions and stabilize the contaminated heavy metals from bottom ash samples. In this study, we used PC boiler bottom ash, Kanvera reactor (KR) slag and calcined waste lime for measuring chemical analysis and heavy metals leaching tests were performed and also the formation of calcite resulting from accelerated carbonation process was investigated by thermo gravimetric and differential thermal analysis (TG/DTA).

Stabilization of Lateritic Soil with Eggshell Powder

  • Ndagijima, Jacques;Kim, Kanghyun;Kim, Seunghyun;Shin, Jongho
    • 한국지반환경공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.5-13
    • /
    • 2022
  • In tropical regions, lateritic soil is frequently used in road embankment. However, it is one of the sources of road failure owing to its low strength. Generally, cement and lime are used as stabilizers for lateritic soil, but they are not environmentally friendly. Some studies try to use eggshells, for they are food waste and share the same chemical composition as lime. Previous researchs have shown that eggshell powder could enhance the strength of lateritic soil. This research investigated the effect of particle size of the eggshell powder and the effect of the protein-membrane presence in the eggshell on stabilizing capacity of soil. Through laboratory tests, unconfined compressive strength was examined for various particle sizes. The particle size of eggshell powder ranging between 150 ㎛ and 88 ㎛ was appropriate size that made an excellent stabilizer at 3% concentration. On the other hand, the protein-membrane reduced the stabilizing ability of the eggshell powder when the content of eggshell powder is less than 4% in soil. Numerical analysis of road embankment was performed based on the results obtained in the laboratory tests. It is shown that the eggshell powder has improved the stability of the sub-base of the road embankment.

성토사면에 타설된 현장 콘크리트 말뚝의 강도특성에 미치는 성토재료 및 타설 방법에 대한 영향 (Effect of Strength Properties of In-Situ Concrete Pile in Embankment Slopes on Embankment Materials and Boring Methods)

  • 황무석;정재훈;박승기;이창수;박찬기
    • 한국농공학회논문집
    • /
    • 제50권5호
    • /
    • pp.73-81
    • /
    • 2008
  • This study evaluated the applicability of in-situ concrete pile as a stabilization materials of embankment slopes including agricultural reservoir and rural road etc. The experimental embankment slopes was constructed to investigate the strength properties of in-situ concrete pile with embankment materials and boring methods. The test variable were applied the boring method(driving and augering) and water-cement ratio. In order to analyze the physical and mechanical properties of embankment materials, permeability and water contents test were was performed. Also, the freshly and harden of in-situ concrete properties were measured by the slump and compressive strength tests. The results showed the water content and permeability of embankment materials and boring methods affected on compressive strength of in-situ concrete pile.

Strength properties of lime stabilized and fibre reinforced residual soil

  • Okonta, Felix N.;Nxumalo, Sinenkosi P.
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.35-48
    • /
    • 2022
  • The effect of discrete polypropylene fibre reinforcement on shear strength parameters, tensile properties and isotropic index of stabilized compacted residual subgrade was investigated. Composites of compacted subgrade were developed from polypropylene fibre dosage of 0%, 1%, 2.5% and 4% and 3% cement binder. Saturated compacted soil benefited from incremental fibre dosage, the mobilized friction coefficient increased to a maximum at 2.5% fibre dosage from 0.41 to 0.58 and the contribution due to further increase in fibre dosage was marginal. Binder stabilization increased the degree of isotropy for unreinforced soil at lower fibre dosage of 1% and then decreased with higher fibre dosage. Saturation of 3% binder stabilized soil decreased the soil friction angle and the degree of isotropy for both unstabilized and binder stabilized soil increased with fibre dosage. The maximum tensile stress of 3% binder stabilized fibre reinforced residual soil was 3-fold that of 3% binder stabilized unreinforced soil. The difference in computed and measured maximum tensile and tangential stress decreased with increase in fibre dosage and degree of stabilization and polypropylene fibre reinforced soil met local and international criteria for road construction subgrade.

Performance of cement-stabilized sand subjected to freeze-thaw cycles

  • Jumassultan, Assel;Sagidullina, Nazerke;Kim, Jong;Ku, Taeseo;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.41-48
    • /
    • 2021
  • In cold regions, the integrity of the infrastructures built on weak soils can be extensively damaged by weathering actions due to the cyclic freezing and thawing. This damage can be mitigated by exploiting soil stabilization techniques. Generally, ordinary Portland cement (OPC) is the most commonly used binding material for investigating the chemo-hydromechanical behavior. However, due to the environmental issue of OPC producing a significant amount of carbon dioxide emission, calcium sulfoaluminate (CSA) cement can be used as one of the eco-sustainable alternatives. Although recently several studies have examined the strength development of CSA treated sand, no research has been concerned about CSA cement-stabilized sand affected by cyclic freeze and thaw. This study aims to conduct a comprehensive laboratory work to assess the effect of the cyclic freeze-thaw action on strength and durability of CSA cement-treated sand. For this purpose, unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed on the stabilized soil specimens cured for 7 and 14 days which are subjected to 0, 1, 3, 5, and 7 freeze-thaw cycles. The test results show that the strength and durability index of the samples decrease with the increase of the freeze-thaw cycles. The loss of the strength and durability considerably decreases for all soil samples subjected to the freeze-thaw cycles. Overall, the use of CSA as a stabilizer for sandy soils would be an eco-friendly option to achieve sufficient strength and durability against the freeze-thaw action in cold regions.

친환경 토질개량제를 이용한 도로노반 건설공사에 관한 연구 (Construction of roadbed with environmental friendly soil amendment agent)

  • 고용국
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.417-421
    • /
    • 2003
  • The purpose of this paper is to study on the construction of roadbed with environmental friendly soil amendment agent. The special amendment agent used in this study is mainly composed of inorganic metal salts such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride,, thus is friendly to the environment, and has a function of soil-cement-agent solidification. Various components of this agent weaken the negative function of humic acid and decompose humic acid itself. Then, the calcium cation of the cement can now be made contact directly to the soil surface. The project of local road demonstration of roadbed construction with special soil treatment agent was peformed in Northeast Thailand on August 1999 by the sponsor of Highway Department of Thailand. A series of field experiments including unconfined compressive strength were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this solidifying agent. The results of this research showed that the roadbed using poor soil could be efficiently constructed by treatment of this amendment agent.

  • PDF