• Title/Summary/Keyword: cement replacement ratio

Search Result 415, Processing Time 0.025 seconds

Dynamic Properties of the Inorganic Binder Based on Blast Furnace Slag and Polysilicon Sludge ratio (고로슬래그와 폴리실리콘 슬러지의 비율에 따른 무기결합재의 역학적 특성)

  • Lim, Jeong-Geun;Lee, Ji-Hwan;Park, Hee-Gon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.146-147
    • /
    • 2014
  • The environmental pollution problem the globally related to global warming arises, the demand for the solar power generation increases. But is generated sludge about 2tons in order to produce 1ton in the solar power generation used main material polysilicon. In this way, the arising sludge there is not method recycling and it is all discarded. Therefore, in this research, cement is not used dynamic properties tries to be analyze inorganic binder based on blast furnace slag and polysilicon sludge ratio. The appropriate replacement ratio of the experimental result polysilicon sludge was to be 8%.

  • PDF

Effect of Replacing Fine Aggregate by Cathode-Ray Tube(CRT) Waste Glass on Gamma-ray Shielding Properties of Cement Mortar Specimen (폐 브라운관(CRT) 유리의 잔골재 대체가 모르타르 시험체의 감마선 차폐에 미치는 영향)

  • Choi, Yoon-Suk;Lee, Seon-Min;Kim, Tae-Sang;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.172-180
    • /
    • 2019
  • In this study, the microstructure and gamma-ray shielding efficiency of CRT glass mortar specimen were evaluated with replacement ratio and material properties. The results show that as the replacement ratio of CRT waste glass increases, the volume of pores with diameters below 50 nm and above 400 nm is increased. Also, the half-value layer of CRT glass mortar decreased with the increasing of linear attenuation coefficient. In addition, compressive and flexural strength were reduced when CRT waste glass was replaced as the fine aggregate, but the mechanical performance of CRT mortar specimen could be obtained by substitution of the mineral admixture.

Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

  • Kwon, S.O.;Bae, S.H.;Lee, H.J.;Lee, K.M.;Jung, S.H.
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.209-213
    • /
    • 2014
  • Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased.

Behavior of reinforced sustainable concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Shallal, Mustafa S.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.271-284
    • /
    • 2021
  • This study aims to trace the response of twelve one-way sustainable concrete hollow-core slabs made by reducing cement content and using replacement of coarse aggregate by plastic aggregate. The trial mixes comprise the 25, 50, 75, and 100% replacement of natural coarse aggregate. The compressive strength of the resulting lightweight concrete with full replacement of coarse aggregate by plastic aggregate was 28 MPa. These slabs are considered to have a reduced dead weight due to using lightweight aggregate and due to reducing cross-section through using voids. The samples are tested under two verticals line loads. Several parameters are varied in this study such as; nature of coarse aggregate (natural or recycled), slab line load location, the shape of the core, core diameter, flexural reinforcement ratio, and thickness of the slab. Strain gauges are used in the present study to measure the strain of steel in each slab. The test samples were fourteen one-way reinforced concrete slabs. The slab's dimensions are (1000 mm), (600 mm), (200 mm), (length, width, and thickness). The change in the shape of the core from circular to square and the use of (100 mm) side length led to reducing the weight by about (46%). The cracking and ultimate strength is reduced by about (5%-6%) respectively. With similar values of deflection. The mode of failure will remain flexural. It is recognized that when the thickness of the slab changed from (200 mm to 175 mm) the result shows a reduction in cracking and ultimate strength by about (6% and 7%) respectively.

A Study on Strength Development and Resistance to Sulfate Attack of Mortar Incorporating Limestone Powder (석회석미분말 혼입 모르타르의 강도발현 및 황산염 침해에 대한 저항성에 관한 연구)

  • Koh Kyung-Taek;Yoo Won-Wi;Han Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.303-310
    • /
    • 2004
  • The purpose of this study was to investigate the effect of using method and replacement ratio of limestone powder and water-cement ratio on the compressive strength and the resistance to sulfate attack of mortar incorporating limestone powder as fundamental study to use limestone powder as an addition for concrete. As a results, The method using limestone powder as a part of cement showed decrease of the compressive strength of mortar. The strength of mortar incorporating limestone powder almost decided upon unit cement content. It was recognized that the method replacing limestone powder as a part of cement was effective to decrease the heat of hydration in concrete. The method using limestone powder as a part of fine aggregate showed the considerable increase of the strength and resistance to sulfate attack of concrete. Furthermore, it was recognized that the method using limestone powder as a part of fine aggregate were effective materials as an addition for concrete in view of the improvement of strength and resistance to sulfate attack.

Optimum Mix Proportion of Latex Modified Repair Mortar for Agricultural Concrete Structures (농업용 콘크리트 구조물을 위한 라텍스 개질 보수용 모르타르의 적정 배합비 도출)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Park, Seong-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.37-46
    • /
    • 2007
  • The service life of agricultural concrete structures is designed in about 30 to 100 years, but actual service lift is estimated in an average 18 years. Therefore, as the service life of the agricultural concrete structures increases, necessity of repair by aging from various environment condition exposure increases. This study was to determinate the optimum mix proportion of latex modified repair mortar and to improve the durability performance of agricultural concrete structures. The physical and mechanical tests of latex modified repair mortar were performed. Tests of flow, compressive strength, flexural strength and bond strength tests were conducted. Test results show that the optimum nex proportion of latex modified repair mortar, when used in 5% latex volume fraction (weight of cement), 1.5% antifoaming agent (weight of latex), 0.2% PVA fiber volume fraction, 1:2 (binder-sand ratio), 10% silica fume replacement ratio (weight of cement), could result in best performance for the repair of agricultural concrete structures.

Properties of High Strength Concrete Using Fly Ash and Crushed Sand (플라이 애시와 부순모래를 사용한 고강도 콘크리트의 특성)

  • 이봉학;김동호;전인구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.107-116
    • /
    • 2002
  • The amount used of aggregates for concrete is increasing rapidly since the mid-1980s in Korea. The natural gravels from river are already displaced with crushed stone, and use of crushed sand as a substitute of natural river sands, also, is getting increased day by day. This paper is presented fur analysis on mechanical properties of high strength concrete using fly ash and crushed sand. The material functions in mixing design of concretes are various water-cement ratios(w/c) such as 0.25, 0.40, 0.55 and different replacement ratio of crushed sand to natural sands such as 0%, 20%, 40%, 60%. As a results, it has been shown that compressive strengths of concretes with W/C lower than 0.40 and 0.25 are higher than 400 kgf/$\textrm{cm}^2$ and 600 kgf/$\textrm{cm}^2$ respectively. It is also concluded that the results of rapid chloride permeability tests of concrete are evaluated to negligible. The conclusions of this study is that it is possible to use fly ash and crushed sand fur high strength concrete.

Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material

  • Al-Amoudi, Omar S. Baghabra;Ahmad, Shamsad;Khan, Saad M.S.;Maslehuddin, Mohammed
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • This paper reports an experimental investigation conducted to evaluate the durability performance of concrete mixtures prepared utilizing blends of Type I Portland cement (OPC) and natural pozzolans (NPs) obtained from three different sources in Saudi Arabia. The control concrete mixture containing OPC alone as the binder and three concrete mixtures incorporating NPs were prepared keeping water/binder ratio of 0.4 (by weight), binder content of $370kg/m^3$, and fine/total aggregate ratio of 0.38 (by weight) invariant. The compressive strength and durability properties that included depth of water penetration, depth of carbonation, chloride diffusion coefficient, and resistance to reinforcement corrosion and sulfate attack were determined. Results of this study indicate that at all ages, the compressive strength of NP-admixed concrete mixtures was slightly less than that of the concrete containing OPC alone. However, the concrete mixtures containing NP exhibited lower depth of water penetration and chloride diffusion coefficient and more resistance to reinforcement corrosion and sulfate attack as compared to OPC. NP-admixed concrete showed relatively more depth of carbonation than OPC when subjected to accelerated carbonation. The results of this investigation indicates the viability of utilizing of Saudi natural pozzolans for improving the durability characteristics of concrete subjected to chloride and sulfate exposures.

A Hardening Properties of Eco-Friendly SCW Grouting Material (친환경 SCW공법용 그라우팅재의 경화특성)

  • Jo, Jung-Kyu;Park, In-Wook;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2018
  • Since the current method of SCW cement milk pouring method uses one to one ratio of cement milk with OPC, there are some problems such as drying shrinkage, increased cost, difficulty of controlling mix proportions for various conditions of applied soil, and precipitation of $Cr^{6+}$ due to the excessively used cement. Specifically, in aspect of sustainability issues of cement manufacturing, the consumption of cement should be reduced. Hence, in this research, as a replacement of cement for SCW method, blast furnace slag with sulfate or alkali as a stimulant, and expansive admixture were used. By using blast furnace slag as a hardening composite of SCW, there are many advantages such as free controllable mix proportions, rapid setting time with less mud occurrence, less cost with less energy for mixing, constant strength development, and less precipitation of $Cr^{6+}$. Regarding the alternative composites for SCW, in this research, durability and chloride resistance were evaluated.

Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture (CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가)

  • Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • Steel fiber is a effective composite for crack resistance and improve structural performance under tensile loading. This study presents an evaluation of crack resistance and structural performance in cement mortar with steel fiber and expansion agent through internal chemical prestressing. For this work, cement mortar samples with 10% replacement of cement binder with CSA (Calcium-Sulfo-Aluminate) expansion agent and 1% volume ratio of steel fiber are prepared. Including basic mechanical properties, initial cracking load and fracture energy are evaluated in cement mortar beam with notch. Initial cracking load and fracture energy in cement mortar with CSA and steel fiber increase by 1.75 and 1.41~1.53 times compared with those in cement mortar with steel fiber. With optimum mix design for steel fiber and CSA expansive agent, the composite with chemical prestressing can be applied to various members and effectively improve crack resistance to external loading.