• 제목/요약/키워드: cement fineness modulus

검색결과 33건 처리시간 0.026초

An advanced machine learning technique to predict compressive strength of green concrete incorporating waste foundry sand

  • Danial Jahed Armaghani;Haleh Rasekh;Panagiotis G. Asteris
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.77-90
    • /
    • 2024
  • Waste foundry sand (WFS) is the waste product that cause environmental hazards. WFS can be used as a partial replacement of cement or fine aggregates in concrete. A database comprising 234 compressive strength tests of concrete fabricated with WFS is used. To construct the machine learning-based prediction models, the water-to-cement ratio, WFS replacement percentage, WFS-to-cement content ratio, and fineness modulus of WFS were considered as the model's inputs, and the compressive strength of concrete is set as the model's output. A base extreme gradient boosting (XGBoost) model together with two hybrid XGBoost models mixed with the tunicate swarm algorithm (TSA) and the salp swarm algorithm (SSA) were applied. The role of TSA and SSA is to identify the optimum values of XGBoost hyperparameters to obtain the higher performance. The results of these hybrid techniques were compared with the results of the base XGBoost model in order to investigate and justify the implementation of optimisation algorithms. The results showed that the hybrid XGBoost models are faster and more accurate compared to the base XGBoost technique. The XGBoost-SSA model shows superior performance compared to previously published works in the literature, offering a reduced system error rate. Although the WFS-to-cement ratio is significant, the WFS replacement percentage has a smaller influence on the compressive strength of concrete. To improve the compressive strength of concrete fabricated with WFS, the simultaneous consideration of the water-to-cement ratio and fineness modulus of WFS is recommended.

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

마감용 건조모르타르의 물성에 미치는 각 요인의 영향 (Factors on the Physical Properties of Dry Ready Mixed Cement Mortar for Finishing)

  • 정재동;김원기;이영진;송용순;황재현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.138-143
    • /
    • 1993
  • The objective of this report is to investigate the effect of factors like the fineness modulus of sand , content of fly ash and slaked lime, binder/sand ratio, admixture dosage on the physical properties of mortar for finishing. The analysis was performed with design of experiment and air content, water retention and compressive strength were measured.

  • PDF

고로슬래그를 혼화재로 혼입한 투수콘크리트의 물리적 특성에 과한 실험적 연구 (An Experimental Study on the Physical Properties of Porous Cement Concrete Using Blast-furnace Slag as an Admixture)

  • 심종우;채창우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.144-149
    • /
    • 2000
  • Porous cement concrete was developed to prevent hydroplaning of airway pavement or to reduce noise emission in highway. In has been introduced in domestic since early 1980' and applied to a pedestrian road or bike way. The concrete, however, has problems such as lack of optimized mix design, low strength and deterioration, etc. The purpose of this study is to manufacture porous cement concrete using blast-furnace slag to enhance mechanical properties. The results of this study are as follows; the compressive strength range is 102∼247kgf/㎠, the tensile strength range is 16∼70kgf/㎠, the bending strength range is 43∼70kgf/㎠, and the coefficient permeability range is 6.79 ×10-2∼1.17∼10-1cm/sec. To develope high-performance porous concrete, further studies are needed on optimum mixture of fineness modulus and admixture.

  • PDF

혼합 잔골재의 입자 크기에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축 특성 (The Strength and Drying Shrinkage Properties of Alkali-Activated Slag Mortars as the Particle Size of Blended Fine Aggregate)

  • 김태완
    • 콘크리트학회논문집
    • /
    • 제27권3호
    • /
    • pp.273-281
    • /
    • 2015
  • 본 연구는 세 종류의 서로 다른 규사와 강모래의 조합이 알칼리-활성화 슬래그(AASC) 시멘트의 압축강도와 건조수축 특성에 주는 영향에 대한 것이다. 모래의 특성은 알칼리 활성화 시멘트의 특성에 중요한 영향을 미친다. 세 종류의 규사 (S1, S2 그리고 S3)와 강모래 (RS)를 사용하였다. 또한 세 종류의 혼합 모래에대해 실험을 수행하였다. 첫 번째 시리즈 (S1)는 강모래(RS)와 규사1 (SS1)을, 두 번째 시리즈 (S2)는 강모래(RS)와 규사2 (SS2)를, 세 번째 시리즈(S3)는 강모래 (RS)와 규사3 (SS3)을 서로 다른 비율로 혼합하였다. 그 결과 혼합 모래는 AASC 모르타르의 특성에 특이할만한 영향을 주는 것으로 나타났다. 모래의 입자크기와 혼합율의 관계에 따른 압축강도와 건조수축은 혼합된 모래의 조립률(FM)과 상대 표면적이 충분히 고려되어야 한다. 모래의 종류와 혼합비율은 AASC 모르타르의 배합 설계에 중요하게 고려되어야 할 요소이다.

바닥용 모르타르의 균열방지를 위한 실험적 연구 (An Experimental Study for Crack Prevention of Floor Mortar)

  • 정재동;최응규;김진근;이칠성;이상순
    • 콘크리트학회지
    • /
    • 제8권3호
    • /
    • pp.167-175
    • /
    • 1996
  • 최근 건설 현장에서 소성수축과 건조수축으로 인한 바닥용 모르타르의 균열은 매우 심가하다. 이러한 바닥용 모르타르의 균열을 방지하기 위하여 필요한 작업성을 유지하면서 단위수량을 최소화하는 최적배합의 선정과 팽창제를 사용하여 수축을 보상하는 방법에 대하여 연구하였다. 현장조사에 의하면 현장에서 사용중인 바닥용 모르타르의 물 시멘트는 약 64%인 것으로 나타났다.그리고 바닥용 모르타르의 물 시멘트를 줄이더라도 조립율이 큰 잔골재를 사용하고 고성능감수제를 적정량만큼 첨가하면 필요한 작업성을 유지할 수 있는 것으로 나타났다. 또한 이 연구에서는 모르타르의 플로우와 물 시멘트비, 잔골재시멘트비, 잔골재의 조립율과의 관계식을 제안하였으며, 제시된 식은 바닥용 모르타르의 배합설계에 유용하게 활용될 것으로 판단된다.

Fresh and hardened properties of rubberized concrete using fine rubber and silpozz

  • Padhi, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • 제4권1호
    • /
    • pp.49-69
    • /
    • 2016
  • This work investigates the mechanical properties of conventional concrete (CC) and self compacting concrete (SCC) using fine rubber and silpozz were accompanied by a comparative study between conventional rubberized concrete (CRC) and self compacting rubberized concrete (SCRC). Fine rubber (FR) from scrap tires has replaced the fine aggregate (FA) and Silpozz has been used as a replacement of cement at the proportions of 5, 10 and 15%. Silpozz as a partial replacement of cement in addition of superplasticiser (SP) increases the strength of concrete. Fresh concrete properties such as slump test, compaction factor test for CRC, whereas for SCRC slump flow, $T_{500}$, V-funnel, L-box, U-box, J-ring tests were conducted along with the hardened properties tests like compressive, split tensile and flexural strength test at 7, 28 and 90 days of curing. The durability and microstructural behavior for both CRC and SCRC were investigated. FR used in the present study is 4.75 mm passing with fineness modulus 4.74.M30 grade concrete is used with a mix proportion of 1:1.44:2.91 and w/c ratio as 0.43. The results indicate that as FR quantity increases, workability of both CRC and SCRC decreases. The results also show that the replacement of natural fine aggregate (NFA) with FR particles decreases the compressive strength with the increase of flexural strength observed upto 5% replacement of FR. Also replacement of cement with silpozz resulted enhancement of strength in SCRC.

Experimental studies on rheological properties of smart dynamic concrete

  • Bauchkara, Sunil D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.183-199
    • /
    • 2017
  • This paper reports an experimental study into the rheological behaviour of Smart Dynamic Concrete (SDC). The investigation is aimed at quantifying the effect of the varying amount of mineral admixtures on the rheology, setting time and compressive strength of SDC containing natural sand and crushed sand. Ordinary Portland cement (OPC) in conjunction with the mineral admixtures was used in different replacement ratio keeping the mix paste volume (35%) and water binder ratio (0.4) constant at controlled laboratory atmospheric temperature ($33^{\circ}C$ to $35^{\circ}C$). The results show that the properties and amount of fine aggregate have a strong influence on the admixture demand for similar initial workability, i.e., flow. The large amounts of fines and lower value of fineness modulus (FM) of natural sand primarily increases the yield stress of the SDC. The mineral admixtures at various replacement ratios strongly contribute to the yield stress and plastic viscosity of SDC due to inter particle friction and cohesion.

동슬래그 혼합 잔골재를 이용한 콘크리트의 물리적 특성 (Physical Properties of Concrete mixed with Fine Sand and Copper Slag)

  • 이진우;김경민;배연기;이재삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.15-18
    • /
    • 2003
  • Development of the construction industry generally exhausts natural aggregate. Hence it is problem to the lack of supply and quality deterioration, so the resource saving and protection of environment is made an effort through recycling by-product. This study presents that fundamental properties of concrete which used cooper slag as alternate sand of low fineness modulus and plan of cooper slag as concrete aggregate. Testing factors are concrete's slump, air contents, unit weight and compressive strength. The results of this study are as follows; (1) Concrete slump is generally satisfied with the condition but is inferior to the others in substitution rates 30%. Also air contents are 3.1-4.1% and go up according to increase substitution rate. (2) Unit weight increase in 1.1% as the mixing ratio of cooper slag argument 10%. (3) compressive strength of cooper slag concrete is similar to plain and especially higher 11-15% in W/C 45%, 50%. So it seems that aggregate mixed cooper slag is suitable to low water-cement ratio mixture.

  • PDF

세골재의 조립율에 따른 고유동콘크리트의 유동특성에 관한 실험적 연구 (An Experimental Study on the Fludity of High Flowing Concrete according to the Fineness Modulus of Fine Aggregate)

  • 박유신;강석표;조성현;최세진;김규용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.385-390
    • /
    • 1997
  • In the mixing proportion of high flowing concrete we have to use quantity of power such as cement and superplasticizer, and increase the proportion of fine aggregate more than that of plain concrete to increase flowability and segregation resistance. Therefore, the fresh state of high flowing concrete is largely affected by superplasticizer and change of grade the percentage of surface water. This study aims at development of self-filling up high flowing concrete without compaction, in case of using the fine aggregate of standard grade range, by examination on the influence of fresh state of high flowing concrete, and by understanding influence on various fluidity such as flowability, reinforcement passibility, fillingability, segregation resistance.

  • PDF