• Title/Summary/Keyword: cement board

Search Result 61, Processing Time 0.026 seconds

An Experimental Study on the Geopolymer for Wood Wool Ceramic Board (목모 패널용 Geopolymer Binder 개발에 관한 실험적 연구)

  • Park Dong Cheol;Lee Sea Hyun;Song Tae Hyeob;Shim Jong Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.711-714
    • /
    • 2005
  • This paper focused on development of geopolymer for wood wool ceramic board. Geopolymer can substitude ordinary portland cement and its accelerator of wood wool cement board as inorganic polymer. In this study, what we would obtain geopolymer's properties such as initial setting time(KS L 5108), flow(KS L 5102) and compressive strength of 3days aged(KS L 5105), was less than 1 hour, more than $110\%$, more than 40Mpa. Geopolymer have three essential materials called filler, hardener and geopolymer liquor. So, We applied filler by quartz, hardener by blast furnace slag powder, metakaoline and fly ash, geopolymer liquor by NaOH, KOH and sodium silicate solution. As result of this experiment, what we could obtain best fitted geopolymer's properties such as initial setting time, flow and compressive strength of 3days aged, was 45min, $116\%$ and 43.6Mpa. This result can be applicable to commercial wood wool ceramic board.

  • PDF

An Experimental Study for Cement Setting Property of Wood Chip Board Using Construction Waste Wood (건설폐목을 이용한 목질계보드의 시멘트응결 특성에 관한 실험적 연구)

  • Kim, Sae Hoan;Oh, Sae Chool
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.80-86
    • /
    • 2007
  • In this study we experimented setting time and basic properties as waste wood fiber and sodium silicate substitution rate to reuse waste wood fiber produced in construction field to wood chip board. To do this construction waste woods were crushed with the size less than 10mm, mixed with the rate of 1:2, 2.5, 3, and added sodium silicate with the rate of 0, 5% of cement content. The results are as follows. As the substitution rate of construction waste wood was increased delay of setting time was also increased, and the batch of adding 5% accelerator had a 13~17 hours faster setting time than non accelerator batch. The compressive strength was lower as wood substitution rate was higher, and as the specific gravity was higher, the strength was also higher. As wood substitution rate was higher, heat conductivity was lower, and as specific gravity was higher, heat conductivity also was higher.

  • PDF

Studies on Manufacturing Possibility of Paper Sludge-Cement Boards (II) - Physical and Mechanical Properties and SEM Observation - (제지(製紙) 슬러지-시멘트보드이 제조가능성(製造可能성)에 관(關)한 연구(硏究)(II) - 물리(物理)·기계적(機械的) 성질(性質) 및 SEM 측정(測定) -)

  • Kim, Sa-Ick;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.37-45
    • /
    • 1994
  • The possibility of reusing the paper sludge as a raw material of composition board mixed with cement was investigated. For the measurement of physical and mechanical properties, wood coment board and sludge combinend cement boards were fabricated with the three weigh ratios of paper sludge 10 % (SI), 20 % (S II) and 30 % (S III) to cement weight. For adding the cement hardning, $CaCl_2$ was also added to each mixed paste with the ratio of 1 %, 3 % and 5 % to cement weight, respectively. Crystal formation in paper sludge-, wood-cement composites was observed by scanning electron microscope. The results were summarized as follows. 1. Density and partial compressive strength of each specimens were relatively high in the order of sludge I, sludge II, Korean pine, Italian poplar and sludge III, sludge I, Korean pine, sludge II, Italian poplar and sludge III. 2. The mechanical properties of sludge-cement boards (S I and II) were higher than that of wood-cement boards prepared with Korean pine and Italian poplar. But the mechanical properties of wood-cement boards were improved by the adding of $CaCl_2$. 3. Water absorption and thickness swelling were increased with increase of sludge content to cement weight. 4. In SEM observation, sludge-cement composites showed sufficiently formed crystals but wood-cement composites showed poorly formed crystals.

  • PDF

The Length Change Characteristic of the Ternary System Inorganic Composites adding the Waste Gypsum Board Micro Powder containing SO3 the great quantity (SO3를 다량 함유한 폐석고보드 미분말을 첨가한 3성분계 무기결합재의 길이변화 특성)

  • Kim, Yun-Mi;Park, Jong-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.65-66
    • /
    • 2012
  • The cement used in the construction industry of the manufacturing process, large amounts of the greenhouse gas, CO2 and is currently being studied for cement substitutes that reduce greenhouse gas issue. Therefore, the this study as a replacement for cement industrial by-product of blast furnace slag, red mud, silica fume and alkali-activator, using only inorganic composites without high-temperature calcination process were manufactured. The waste gypsum board micro powder added to compensate for the shrinkage cracks, the compressive strength and flow, and length change characteristics were investigated. Consequently, The setting time was shortened as GB added And liquidity was reduced. GB 2%, 7 days curing the added strength of specimens was the highest. Came out, and change the length of the Plain least.

  • PDF

Dimensional Stability of Cement-Bonded Boards Manufactured with Coffee Chaff

  • AJAYI, Babatunde
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.52-58
    • /
    • 2006
  • Coffee chaff for manufacturing of the 6 mm thick cement-bonded boards was obtained from a coffee processing industry at Omuo-Ekiti, in Ekiti State, Nigeria. Boards were produced with three levels of cement to coffee chaff ratio of 1.5:1, 2.5:1 and 3.5:1; and at three levels of mixing curing reagent of 2.0%, 2.5% and 3.0%. Three dimensional properties of thickness swelling (TS), water absorption (WA) and linear expansion (LE) were investigated after 48 hours immersion in water. The mean values obtained for TS, WA and LE ranged from 0.46% to 1.47%, from 11.52% to 24.00%, from 0.19% to 0.35%, respectively. The most dimensionally stable boards were produced at the highest mixing levels of curing reagent and cement to coffee chaff ratio of 3.0% and 3.5:1, respectively. The coffee chaff is suitable as raw material for the manufacture of cement-bonded composites and it would be able to stimulate and activate the use of other agro-byproducts for the manufacture of value-added panels.

An Experimental Study on the Analysis of Behavior Characteristics of the NDB Soil Nailing System (NDB 쏘일네일링 시스템의 거동특성 평가에 관한 실험적 고찰)

  • 김홍택;정성필;박시삼;전경식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.521-528
    • /
    • 2003
  • In this study, a newly modified soil nailing technology called as the NDB(New Down and Board) soil nailing system is introduced. To improve the trafficability, workability, and economical efficiency, SMC(Sheet Molding Compound) board is adopted instead of using the concrete block facing. The SMC board has a distinct advantage of showing a fine view by directly coating with any kind of environmental photos. Composite material properties of the SMC board and cement grout are distinguished features of the NDB soil nailing system. In the present study, both laboratory tests(bending and punching failure tests) and field pull-out tests are carried out to analyze the behavior characteristics of the NDB soil nailing system, including the stress and strain distribution.

  • PDF

An Experimental Study on the Physical Properties of Wood Wool Board Applied Inorganic Polymer Binder (무기 폴리머 결합재를 사용한 목모 보드의 물리적 특성에 관한 실험적 연구)

  • Choi, Hae-Young;Park, Dong-Cheol;Yang, Wan-Hee;Lee, Se-Hyun;Song, Tae-Hyup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.853-856
    • /
    • 2006
  • It is known that cement production not only consumes large amount of energy but also contributes substantially to the green house gas emission. Therefore, there is a demand to develope a new technology to produce energy efficient and environmental conscious cements. The most recent, wood wool ceramic board is being applied in various building material field, for example thermal insulating and acoustic absorption material. This paper focused on improvement of the physical properties for wood wool ceramic board applied inorganic polymer binder. As the result of this experiment, what we could obtain better wood wool ceramic board's properties such as density, water contests, water resistance and band strength, was 0.46, $10{\sim}12%$, 1.9% and $40kgf/cm^2$. This result can be applicable to commercial wood wool ceramic board.

  • PDF

Radon adsorption properties of cement board using anthracite (안트라사이트를 혼입한 시멘트 보드의 라돈흡착 특성)

  • Kyoung, In-Soo;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.232-233
    • /
    • 2018
  • Among the recent environmental pollution, indoor air pollution has an adverse effect on the health of indoor residents. Radon, one of the causes of indoor air pollution, is released from concrete, gypsum board and asbestos slate among building materials. Radon is a primary carcinogen and is a colorless, tasteless, odorless inert gas that adheres to airborne dust and enters the body through breathing. At this time, there is a risk of developing cancer if the alpha rays from the lononggas entering the human body destroys the lung tissue and is continuously exposed to a high concentration of lonon gas. The World Health Organization (WHO) has emphasized the reduction of radon and its exposure to radon by classifying it as a first-level carcinogen, but many people have not recognized it yet, and the research is underdeveloped. Therefore, this study was carried out to investigate the properties of adsorbed coconut radon to prevent the inflow of radon gas, which is an air pollution source of indoor air, and to prevent inflow into the human body.

  • PDF

An experimental study for improvement in physical properties on the alumino-silicate binder for wood wool ceramic board (목모 세라믹 보드용 알루미노-실리케이트계 무기 바인더의 물리적 특성 향상에 관한 실험적 연구)

  • Park, Dong-Cheal;Yang, Wan-Hee;Choi, Hae-Young;Lee, Se-Hyun;Song, Tae-Hyup;Sim, Jong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.625-628
    • /
    • 2006
  • It is known that cement production not only consumes large amount of energy but also contributes substantially to the green house gas emission. Therefore, there is a demand to develope a new technology to produce energy efficient and environmental conscious cements. The most recent, wood wool ceramic board is being applied in various building material field, for example thermal insulating and acoustic absorption material. This paper focused on improvement of alumino-silicate binder's physical properties for wood wool ceramic board. As the result of this experiment, what we could obtain best fitted alumino-silicate binder's properties such as initial setting time, flow and compressive strength of 3 days aged, was 58min, 110% and 66.0Mpa. This result can be applicable to commercial wood wool ceramic board.

  • PDF

Contribution to the development of tiles made of paper board sludge

  • Velumani, P.;Manikandan, P.
    • Advances in environmental research
    • /
    • v.9 no.4
    • /
    • pp.285-294
    • /
    • 2020
  • Growth of any country rest in the consumption of industrial wastes for its infrastructure amenities. Countries like India positively desires a vital utilization of industrial waste resembling paper sludge in the construction industry to make various building materials. Also, it is the duty of all civil engineers or researchers to attach them in mounting new materials from the waste dumped as land fillings. In every construction project, about 70% of cost accounts for the procurement of materials. If this, can be minimized consequently the cost of construction will certainly be condensed. Research has established that the waste paper sludge can be reused in the construction field for a probable scope. The construction diligences munch through a massive quantity of non-renewable resources. On the additional dispense, more waste paper board sludge ends up in landfills or dumpsites than those recycled. Consequently, waste paper sludge for use as a construction material composes a step towards sustainable development. Keeping this in mind an endeavor has been made to utilize paper board sludge acquired from the paper board industry and used with several pozzolanic and cementitious materials for a specific purpose. The addition of paper sludge has been varied from 0% to 20% by weight of cement. The tests done with the samples expose that four samples showed significant outcomes with remarkable strength and durability properties which guide to move for the next phase of research for producing lightweight tiles.