• 제목/요약/키워드: cellulosic materials

검색결과 75건 처리시간 0.05초

Effect of PFI mill and Valley beater refining on cellulose degree of polymerization, alpha cellulose contents, and crystallinity of wood and cotton fibers

  • Hai, Le Van;Park, Hee Jung;Seo, Yung Bum
    • 펄프종이기술
    • /
    • 제45권4호
    • /
    • pp.27-33
    • /
    • 2013
  • Manufacturing fabrics from dissolving cellulosic pulp is increasing in these days. For making high quality of cellulose-based fabrics, control of cellulose DP (degree of polymerization), its alpha cellulose content, its brightness, and its crystallinity are important. To process the cellulosic raw material, refining of cellulosic fibers is essential, and it is important to know if refining affects those important cellulose properties. The effects of PFI mill and Valley beater refining on the alpha-cellulose content, cellulose DP, crystallinity, and paper mechanical properties of wood and two different cotton fibers were studied. The results showed that PFI mill refining rarely affected those properties. Fibers refined by a Valley beater displayed a small reduction in fiber length in comparison with those refined by a PFI mill. However, the Valley beater refining method produced almost no changes in cellulose properties, either. The refining process seemed to have very little effect on the cellulose DP, crystallinity index, or alpha-cellulose content until the freeness decreased to around 300 mL CSF for wood and 100 mL CSF for cotton fibers, respectively. There were also no differences in tensile strength development in two refining methods.

Cellulosic Nanomaterial Production Via Fermentation by Komagataeibacter sp. SFCB22-18 Isolated from Ripened Persimmons

  • Park, Myung Soo;Jung, Young Hoon;Oh, Seung-Yoon;Kim, Min Ji;Bang, Won Yeong;Lim, Young Woon
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.617-624
    • /
    • 2019
  • Bacterial nanocellulose (BNC) which is generally synthesized by several species of bacteria has a wide variety of industrial uses, particularly in the food and material industries. However, the low levels of BNC production during the fermentation process should be overcome to reduce its production cost. Therefore, in this study, we screened and identified a new cellulose-producing bacterium, optimized production of the cellulose, and investigated the morphological properties of the cellulosic materials. Out of 147 bacterial isolates from ripened fruits and traditional vinegars, strain SFCB22-18 showed the highest capacity for BNC production and was identified as Komagataeibacter sp. based on 16S rRNA sequence analysis. During 6-week fermentation of the strain using an optimized medium containing 3.0% glucose, 2.5% yeast extract, 0.24% acetic acid, 0.27% $Na_2HPO_4$, and 0.5% ethanol at $30^{\circ}C$, about 5 g/l of cellulosic material was produced. Both imaging and IR analysis proved that the produced cellulose would be nanoscale bacterial cellulose.

Printing Properties of Novel Regenerated Cellulosic Fibers

  • Kim, Ik-Soo;Koh, Joon-Seok;Han, Nam-Keun;Kim, Jae-Pil
    • Fibers and Polymers
    • /
    • 제5권3호
    • /
    • pp.219-224
    • /
    • 2004
  • The reactive printing properties of regular viscose rayon and a new regenerated cellulosic fiber (en Vix^{\textregistered}$) which was prepared from cellulose acetate fiber was investigated in a comparative manner. From the results, it was found that en Vix exhibited better printing properties than regular viscose rayon. It showed stable final color yields, irrespective of the amount of thickener, hence reproducibility of printing of en Vix is expected to be excellent. In addition, urea requirements were less for the printings on en Vix than for the corresponding printing on viscose rayon. Therefore, en Vix is also expected to reduce the amount of the urea which causes environmental problems in dyehouse effluent.

CED(Cupriethylene diamine)과 NMMO (N-methylmorpholine-N-oxide)를 이용한 셀룰로오스의 중합도 측정법의 비교 (Comparison of cellulose DP measurements using the CED (Cupriethylene diamine) and NMMO(N-methylmorpholine-N-oxide))

  • 이민우;박지순;박동휘;서영범
    • 펄프종이기술
    • /
    • 제42권5호
    • /
    • pp.62-66
    • /
    • 2010
  • Cellulosic materials were dissolved by NMMO(N-methylmorpholine-N-oxide) and CED (Cupriethylene diamine), respectively, to measure their DPs (degrees of polymerization) by using viscometer. We changed cellulose DPs by applying various amounts of low intensity electron-beam radiation to the cellulosic materials. NMMO is environmental-friendly, non-toxic, and biodegradable organic cellulose solvent and used industrially because of its high cellulose dissolving power and high solvent recovery ratio. The cellulose DP measurement results using these two different chemicals were correlated highly ($R^2$ >0.95). It was also found that cellulose with high DP was dissolved more easily in NMMO than CED. In addition, NMMO method gave more higher resolution in the measurement.

효소기질로서의 섬유소의 성질 (Properties of Cellulose as an Enzyme Substrate)

  • Kim, B. Hong
    • 한국미생물·생명공학회지
    • /
    • 제6권4호
    • /
    • pp.197-203
    • /
    • 1978
  • 섬유소 또는 이를 함유하는 물질을 원료로 당 혹은 단세포단백질을 생산하고자 하는 수 많은 연구가 시도되었다. 기질인 섬유소 혹은 이를 함유하는 물질이 구조가 복잡하여 수용성인 일반 효소기질과 달라서 이를 이용하고자하는 연구에 많은 문제점을 갖고 있으며 실험실 연구 결과를 실제 응용하는 면에서도 어려움을 주고 있다. 본고에서는 이를 물질의 생물학적 분해에 관계되는 물리 및 화학적인 성질을 간단히 살펴보았다.

  • PDF

Nitrogen Source Investigation for Economical Production of Cellulolytic Enzymes

  • Li, Hong-Xian;Kim, Gi-Wan;Lee, Young-Bok;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.250-255
    • /
    • 2005
  • 높은 원가인 펩톤을 다른 질소원으로 대체하기 위하여 콩 혹은 효모의 질소원 대체가능성을 검토한 결과 효모의 농도를 0.5%의 펩톤과 동등한 양의 질소원으로 하였을 때 amylase의 생산성이 2.30 U/ml로써 가장 높았다. 때문에 높은 원가의 펩톤을 효모로 대체하는 것이 가능할 것으로 사료된다.

  • PDF

Screening of Agricultural and Food Processing Waste Materials as New Sources for Biodegradable Food Packaging Application

  • Wang, Long-Feng;Reddy, Jeevan Prasad;Rhim, Jong-Whan
    • 한국포장학회지
    • /
    • 제20권1호
    • /
    • pp.7-15
    • /
    • 2014
  • Agar-based composite films were prepared with variety of food processing and agricultural processing waste materials in order to screen natural lingo-cellulosic resources for the value-added utilization of the under-utilized materials. The effect of these waste materials (10 wt% based on agar) on mechanical properties, moisture content (MC), water vapor permeability (WVP), water absorption behavior of biocomposite films were investigated. Biocomposite films prepared with various fibers resulted in significant increase or decrease in color and percent transmittance. The MC, WVP, and surface hydrophobicity of biocomposite films increased significantly by incorporation of fibers, while the water uptake ratio and solubility of the film decreased. SEM images of biocomposite film showed better adhesion between the fiber and agar polymer. Among the tested cellulosic waste materials, rice wine waste, onion and garlic fibers were promising for the value-added utilization as a reinforcing material for the preparation of biocomposite food packaging films.

  • PDF

Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus

  • Im, Kyung Hoan;Nguyen, Trung Kien;Choi, Jaehyuk;Lee, Tae Soo
    • Mycobiology
    • /
    • 제44권1호
    • /
    • pp.48-53
    • /
    • 2016
  • Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

Isolation of cellulosic biomass degrading microorganisms from different sources for low cost biofuel production

  • ;김철환;이지영;;박혁진;;김성호;김재원
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2011년도 춘계학술발표회 논문집
    • /
    • pp.81-91
    • /
    • 2011
  • Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. Recently, a large amount of studies regarding the utilization of lignocellulosic biomass as a good feedstock for producing fuel ethanol is being carried out worldwide. The plant biomass is mainly composed of cellulose, hemicellulose and lignin. The main challenge in the conversion of biomass into ethanol is the complex, rigid and harsh structures which require efficient process and cost effective to break down. The isolation of microorganisms is one of the means for obtaining enzymes with properties suitable for industrial applications. For these reasons, crude cultures containing cellulosic biomass degrading microorganisms were isolated from rice field soil, cow farm soil and rotten rice straw from cow farm. Carboxymethyl cellulose (CMC), xylan and Avicel (microcrystalline cellulose) degradation zone of clearance on agar platefrom rice field soil resulted approximately at 25 mm, 24 mm and 22 mm respectively. As for cow farm soil, CMC, xylan and Avicel degradation clearancezone on agar plate resulted around at 24mm, 23mm and 21 mm respectively. Rotten rice straw from cow farm also resulted for CMC, xylan and Avicel degradation zone almost at 24 mm, 23 mm and 22 mm respectively. The objective of this study is to isolatebiomass degrading microbial strains having good efficiency in cellulose hydrolysis and observed the effects of different substrates (CMC, xylan and Avicel) on the production of cellulase enzymes (endo-glucanase, exo-glucanase, cellobiase, xylanase and avicelase) for producing low cost biofuel from cellulosic materials.

  • PDF

Degardatrion of Cellulosic Fibers by Electron Beam Irradiation

  • Han, Sung-Ok;Seo, Yung-Bum;Lee, Chun-Han
    • 펄프종이기술
    • /
    • 제39권5호
    • /
    • pp.20-25
    • /
    • 2007
  • Henequen fibers were treated by electron beam irradiation and by NaOH to make surface modification for better bonding in the manufacture of biocomposite. Impurity removal and carbonyl group formation were noticed in the previous study by electron beam irradiation, but extensive cellulose degradation were also noticed. To evaluate the effects of electron beam irradiation on cellulosic fibers further, henequen fibers, cotton pulp, cotton fibers, and cellophane were irradiated by electron beam, and their changes of cellulose viscosity, chemical composition, and tensile strength were measured and analyzed.