• Title/Summary/Keyword: cellulose-degradation

Search Result 227, Processing Time 0.023 seconds

Chemical Characteristics of Timbers from the Yeongheungdo Shipwreck (영흥도선의 화학적 특성)

  • Cha, Mi Young
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • The Yeongheungdo shipwreck was excavated in the sea of Seomeopbeol, Ongjin-gun, Incheon, Korea. Chemical characterization of timbers from the shipwreck occurred via maximum moisture content, chemical composition, FT-IR, solid state $^{13}C$ NMR, and XRD analyses. As maximum moisture content of the outer part of the timbers averaged 623%, a phenomenon in that lignin increased relatively, according to the decrease in cellulose, and the ash content increased, which is typical of waterlogged archaeological wood was shown. The results from the FT-IR and solid state $^{13}C$ NMR analyses showed that the cellulose band of the outer part had disappeared or had remarkably decreased. In addition, the bands assigned to lignin dramatically increased. However, regarding the inner part of the timbers, hemicellulose and some crystalline cellulose and amorphous cellulose bands decreased. Therefore, a large difference exists between the degradation levels of the outer and inner parts of the timbers of the Yeongheungdo shipwreck.

Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor (충진층 반응기에서 고정화 cellulase에 의한 셀룰로스 가수 분해)

  • Kang, Byung Chul;Lee, Jong Baek
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1365-1370
    • /
    • 2013
  • Immobilized cellulase on weak ion exchange resin showed a typical Langmuir adsorption isotherm. Immobilized cellulase had better stability with respect to pH and temperature than free cellulase. Kinetics of thermal inactivation on free and immobilized cellulase followed first order rate, and immobilized cellulase had a longer half-life than free cellulase. The initial rate method was used to characterize the kinetic parameters of free and immobilized enzyme. The Michaelis-Menten constant $K_m$ was higher for the immobilized enzyme than it was for the free enzyme. The effect of the recirculation rate on cellulose degradation was studied in a recycling packed-bed reactor. In a continuous packed-bed reactor, the increasing flow rate of cellulose decreased the conversion efficiency of cellulose at different input lactose concentrations. Continuous operation for five days was conducted to investigate the stability of long term operation. The retained activity of the immobilized enzymes was 48% after seven days of operation.

Effects of Temperature and Compost Conditions on the Biodegradation of Degradable Polymers

  • Jung, Eun-Joo;Shin, Pyong-Kyun;Bae, Hee-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.464-468
    • /
    • 1999
  • The effectiveness of current biodegradation test methods for degradable polymers under controlled composting conditions was studied in regards to the test temperature and compost condition. When biodegradability tests for the natural (starch, cellulose, PHB/HV) and synthetic (PCL, SG, PLA) polymers were conducted at temperature levels of 35 and $55^{\circ}C$ with compost cured at ambient temperature, the degradations of cellulose and starch were higher at $35^{\circ}C$ because of the priming effect. On the other hand, degradations of other polymers were higher at $55^{\circ}C$. In the biodegradation test at $55^{\circ}C$, compost harvested right after the thermophilic degradation stage showed higher biodegradation activities than the cured compost for both the synthetic aliphatic polyester (SG) and a natural polymer, cellulose. These results suggest that the biodegradation test conducted at $55^{\circ}C$ with the compost, harvested right after the thermophilic degradation stage during composting, showed the highest biodegradation activity under controlled composting conditions.

  • PDF

Enzymatic sccharification of lignocellulosic biomass by enzyme system of brown-rot fungi (갈색부후균의 효소시스템을 이용한 목질계 바이오매스의 효소당화)

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Kim, Young-Kyoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.529-532
    • /
    • 2006
  • Recently the production of ethanol from lignocecllulosics has received much attention due to immense potential for conversion of renewable biometerials into biofuels and chemicals. Fomitopsis palustris causes a typycal brown-rot and is unusual in that it rapidly depolymerize the cellulose in wood without removing the surrounding lignin that normally prevents microbial attack. This study demonstrated that the brown rot basidiomycete F. palustris was able to degrade crystalline cellulose. This fungus could also produce the three major cellulases (BGL, EXG and EG) when the cells were grown on 2.0% Avicel. The fungus was able to degrade both the crystalline and amorphous forms of cellulose from woody biomasses. Moreover, we found that this fungus has the processive EG like CBH which are able to degrade the crystalline region of cellulose. To establish the cellulase system in relation with degradation of woody biomass, we performed that purification, characterization and molecular cloning of a BGL, EGs and GLA from F. palustris grown on Avicel.

  • PDF

Effects of Constituents in CNT Pastes on the Field Emission Characteristics of Carbon Nanotubes

  • Kim, Suk-Hwan;Lee, Dong-Gu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.245-249
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been significantly used for the field emitters for display applications. However, the lifetime of CNT emitters which are formed by screen printing technique is not guaranteed yet, because the constituents in CNT paste affect the lifetime of CNTs. The CNT pastes for screen printing are normally composed of organic vehicles (nitro cellulose, ethyl cellulose, etc) and additives (glass frits, indium tin oxide (ITO), etc) with CNTs. In this study, the effects of constituents in CNT pastes on the lifetime and emission characteristics of CNTs were investigated by thermal and electrical analysis. Use of glass frits worsened the lifetime and electron emission of CNTs. However, an addition of ITO to CNT paste rather improved the lifetime of CNTs. Degradation of CNTs was small when nitro cellulose was used in CNT paste as an organic vehicle.

Study on Rumen Cellulolytic Bacterial Attachment and Fermentation Dependent on Initial pH by cPCR (cPCR 기법을 이용한 초기배양 pH에 의한 반추위 섬유소 분해 박테리아의 부착 및 발효에 관한 연구)

  • Kim, M.S.;Sung, H.G.;Kim, H.J.;Lee, Sang-S.;Chang, J.S.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.615-624
    • /
    • 2005
  • The cPCR technique was used to monitor rumen fermentation and attachment of Fibrobacter succinogenes to cellulose at different pH in the in vitro culture medium. The target fragments of 16S rDNA(445 bp) were amplified from genomic DNA of F. succinogenes with specific primers and internal controls(205 bp) were constructed. Cell counts were estimated from the amounts of genomic DNA, which was calculated from cPCR results. F. succinogenes in pH 6.8 and 6.2 showed apparently higher attachment than in pH 5.8 during all incubation time. There were some difference between pH 6.8 and 6.2 in the degree of attachment, but the different was not significant (P>0.05). Cellulose degradation increased in process of incubation time and the increasing rate was higher when initial pH was higher. The pH in culture medium decreased regardless of initial pH in course of incubation time. After 24 h of incubation, medium pH was dropped by 0.24, 0.58 and 0.16 units from original medium pH 6.8, 6.2 and 5.8, respectively. More gas was produced at higher initial pH in the same manner as in cellulose degradation. In summery, Initial pH of rumen culture in vitro significantly influenced cellulose digestion, gas production, pH change and bacterial attachment. Especially, low pH(5.8) resulted in much lower bacterial attachment and fiber digestion compared to higher medium pH.

Changes in the Properties of Cotton Cellulose by Hydrogen Peroxide Bleaching (과산화수소 표백조건에 따른 면셀룰로오스의 특성 변화)

  • Heo, Yong-Dae;Sung, Yong Joo;Joung, Yang-Jin;Kim, Duk-Ki;Kim, Tae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.3
    • /
    • pp.59-68
    • /
    • 2013
  • The cotton contains various impurities such as protein, wax, pectins, coloring matter, even though cotton has been a major source of pure cellulose. The purification processes have been commonly applied to obtain the pure cellulose. However the excessive purification treatments could lead to the damage in the cellulose structure which could result in the degradation of cellulose and the limited application of cotton cellulose. In this study, the changes in cellulose structural properties such as crystallinity and DP(degree of polymerization) by the various conditions of the purification processes were investigated. The less toxic agents such as hydrogen peroxide and sodium silicate were applied for the purification treatment in this study. The increase in the process times, the temperature and the applied amount of chemical agents resulted in the more purified cellulose. The DP of cotton cellulose was increased at the first weak conditions by the reduction of small molecules such as pectin, wax, and so on. Especially the 2 % addition amount of $H_2O_2$ with $Na_2SiO_3$ resulted in the higher value in the DP and the brightness compared to the 1.5 % addition amount of $H_2O_2$. However, the 4 % addition amount of $H_2O_2$ with $Na_2SiO_3$ showed the decreased value because of excessive treatment. In case of the changes in the crystallinity (Gjk), the highest value of the crystallinity was obtained by the 2% addition amount of $H_2O_2$ on the cotton cellulose, which showed similar with the change in the DP.

Enzyme Activities and Substrate Degradation by Fungal Isolates on Cassava Waste During Solid State Fermentation

  • Pothiraj, C.;Eyini, M.
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.196-204
    • /
    • 2007
  • The growth and bioconversion potential of selected strains growing on cassava waste substrate during solid state fermentation were assessed. Rhizopus stolonifer showed the highest and the fastest utilization of starch and cellulose in the cassava waste substrate. It showed 70% starch utilization and 81% cellulose utilization within eight days. The release of reducing sugars indicating the substrate saccharification or degradation potential of the organisms reached the highest value of 406.5 mg/g by R. stolonifer on cassava waste during the eighth day of fermentation. The protein content was gradually increased (89.4 mg/g) on the eighth day of fermentation in cassava waste by R. stolonifer. The cellulase and amylase activity is higher in R. stolonifer than A. niger and P. chrysosporium. The molecular mass of purified amylase and cellulase seemed to be 75 KDal, 85 KDal respectively.

Phosphorolytic Pathway in Cellulose Degradation

  • Kitaoka, Motomitsu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.179-182
    • /
    • 2001
  • Two intracellular enzymes, cellobiose phosphorylase (CBP) and cellodextrin phosphorylase (CDP) are involved in the phosphorolytic pathway in cellulose degradation. Those enzymes are considered to be useful in syntheses of oligosaccharides because the reactions are reversible. CBP from Cellvibrio gilvus and CDP from Clostridium thermocellum YM-4 were cloned and over-expressed in Escharichia coli. Both the enzyme reactions showed ordered bi bi mechanism. Acceptor specificity of CBP in the reverse reaction was determined. Several $\beta$-l,4-glucosyl disaccharides were synthesized by using the reaction. A new substrate inhibition pattern, competitive substrate inhibition, was also found in the reverse reaction of CBP Cellobiose was produced from sucrose at a high yield by a combined action of three enzymes including CBP

  • PDF

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.