DOI QR코드

DOI QR Code

Study on Rumen Cellulolytic Bacterial Attachment and Fermentation Dependent on Initial pH by cPCR

cPCR 기법을 이용한 초기배양 pH에 의한 반추위 섬유소 분해 박테리아의 부착 및 발효에 관한 연구

  • Kim, M.S. (School of Agricultural Biotechnology, Seoul National University) ;
  • Sung, H.G. (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, H.J. (School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Sang-S. (Research Institute, Genebiotech Co.) ;
  • Chang, J.S. (Department of Agricultural Science, Korea National Open University) ;
  • Ha, J.K. (School of Agricultural Biotechnology, Seoul National University)
  • 김민석 (서울대학교 농업생명과학대학 농생명공학부) ;
  • 성하균 (서울대학교 농업생명과학대학 농생명공학부) ;
  • 김현진 (서울대학교 농업생명과학대학 농생명공학부) ;
  • 이상석 ((주)진바이오텍 부설연구소) ;
  • 장종수 (한국방송통신대학교 농학과) ;
  • 하종규 (서울대학교 농업생명과학대학 농생명공학부)
  • Published : 2005.08.31

Abstract

The cPCR technique was used to monitor rumen fermentation and attachment of Fibrobacter succinogenes to cellulose at different pH in the in vitro culture medium. The target fragments of 16S rDNA(445 bp) were amplified from genomic DNA of F. succinogenes with specific primers and internal controls(205 bp) were constructed. Cell counts were estimated from the amounts of genomic DNA, which was calculated from cPCR results. F. succinogenes in pH 6.8 and 6.2 showed apparently higher attachment than in pH 5.8 during all incubation time. There were some difference between pH 6.8 and 6.2 in the degree of attachment, but the different was not significant (P>0.05). Cellulose degradation increased in process of incubation time and the increasing rate was higher when initial pH was higher. The pH in culture medium decreased regardless of initial pH in course of incubation time. After 24 h of incubation, medium pH was dropped by 0.24, 0.58 and 0.16 units from original medium pH 6.8, 6.2 and 5.8, respectively. More gas was produced at higher initial pH in the same manner as in cellulose degradation. In summery, Initial pH of rumen culture in vitro significantly influenced cellulose digestion, gas production, pH change and bacterial attachment. Especially, low pH(5.8) resulted in much lower bacterial attachment and fiber digestion compared to higher medium pH.

본 연구는 배양초기 pH 조건이 F. succino- genes의 섬유소 부착과 섬유소 소화에 미치는 영향을 보고자 실시하였다. 선정된 specific primer를 이용하여 F. succinogenes의 genomic DNA로부터 445bp의 16S rDNA 절편을 증폭하여 205bp의 internal control을 제작하였고, cPCR 결과로부터 박테리아 수를 계산할 수 있는 표준곡선의 회귀식($r^2$>0.99)을 얻을 수 있었다. In vitro 배양초기 pH에 따른 F. succ- inogenes의 cellulose 부착을 cPCR로 모니터링한 결과, 발효과정 전 기간동안 초기 pH가 6.8과 6.2일 때 cellulose 건물 g당 부착 균주의 수가 pH 5.6일 때 보다 높았으나, pH 6.8과 6.2 사이에서는 큰 차이는 없었다(p>0.05). Cellulose 분해는 배양시간이 진행됨에 따라 증가 되었으며, 분해 정도는 pH가 증가함에 따라 더 높았다. 배양초기 pH가 6.8, 6.2 그리고 5.8일 때 48시간동안 감소한 pH는 각각 0.24, 0.58 그리고 0.16 이었다. 가스 생산량은 발효 시간이 경과함에 따라 pH가 높을수록 더 많았다. 결론적으로 발효 초기 pH는 F. succinogenes에 의한 cellulose 소화, 가스 생산, pH 변화 및 cellulose 부착에 큰 영향을 주었으며, 특히, 낮은 pH(5.8)에서는 섬유소 소화 및 박테리아 부착을 현저한 감소 시켰다.

Keywords

References

  1. Bae, H. D., McAllister, T. A., Kokko, E. G., Leggett, F. L., Yanke, L. J.. Jakober, K. D., Ha J. K., Shin, H. T. and Cheng, K. J. 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65: 165-181 https://doi.org/10.1016/S0377-8401(96)01093-0
  2. Dehority, B. A., Tirabasso, P. A. and Grifo, A. P. Jr. 1989. Most-probable-number procedures for enumerating ruminal bacteria, including in the simultaneous estimation of total and cellulolytic numbers in one medium. Appl. Environ. Microbiol. 55:2789-2792
  3. Duncan, D. B. 1955. Multiple range and multiple F test. Biometerics. 11:1 https://doi.org/10.2307/3001486
  4. Firsberg, D. W., Cheng, K. J. and White, B. A. 1997. Polysaccharide degradation in the rumen and large intestine. In Gastrointestinal Microbiology, R. I. Mackie aqnd B. A. White(Eds), Chapman and Hall, New york, U.S.A, p319-379
  5. Grant, R. J. 1994. Influence of com and sorghum starch on the in vitro kinetics of forage fiber digestion. J. Dairy Sci. 77:1563-1569 https://doi.org/10.3168/jds.S0022-0302(94)77098-3
  6. Grant, R. J. and Weidner, S. J. 1992. Digestion kinetics of fiber: influence of in vitro buffer pH varied within observed physiological range. J. Dairy Sci. 75:1060-1068 https://doi.org/10.3168/jds.S0022-0302(92)77850-3
  7. Hungate, R. E. 1966. The Rumen and Its Microbes. Academic Press. New York, N. Y
  8. Koike, S. and Kobayashi, Y. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus jlavefaciens. FEMS Microbiol. Lett. 204: 361-366 https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  9. Koike, S., Pan, J., Kobayashi, Y. and Tanaka, K. 2003. Kinestics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86: 1429-1435 https://doi.org/10.3168/jds.S0022-0302(03)73726-6
  10. McAllister, T. A., Bae, H. D., Jones, G. A. and Cheng, K. J. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018
  11. McDougall, E. I. 1948. Studies on ruminant saliva I. The composition and output of sheep's saliva. Biochem. J. 43:99-109 https://doi.org/10.1042/bj0430099
  12. Miron, J., Ben-Ghedalia, D. and Morrisont, M. 2001. Adhesion mechanism of rumen cellulolytic bacteria. J. dairy Sci. 84:1294-1309 https://doi.org/10.3168/jds.S0022-0302(01)70159-2
  13. Mould, F. L., Orskov, E. R. and Mann, S. O. 1984. Associative effects of mixed feeds. I. effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 10:15-30 https://doi.org/10.1016/0377-8401(83)90003-2
  14. Mourino, F., Akkarawongsa, R. and Weimer, P. J. 2001. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. J. Dairy Sci. 84:848-859 https://doi.org/10.3168/jds.S0022-0302(01)74543-2
  15. Ogata, K., Aminov, R. I., Nagamine, T., Sugiura, M., Tajima, K., Mitsumori, M., Sekizaki, T., Kudo, H., Minato, H. and Benno, Y. 1997. Construction of a Fibrobacter succinogenes Genomic Map and Demonstration of Diversity at the Genomic Level. Curr. Microbiol. 35:22-27 https://doi.org/10.1007/s002849900205
  16. Ogimoto, K. and Imai, S. 1981 Atlas of Rumen Microbiology, Japan Scientific Societies Press, Tokyo
  17. Owens, F. N., Secrist, D. S., Hill, W. J. and Gill, D. R. 1998. Acidosis in cattle: a review. J. Anim, Sci. 76:275-286
  18. Reilly, K. and Attwood, G. T. 1998. Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl. Environ. Microbiol. 64:907-913
  19. Reilly, K., Carruthers, V. R and Attwood, G. T. 2002. Design and use of 16S ribosomal DNA-directed primers in competitive PCRs to enumerate proteolytic bacteria in the rumen. 43:259-270 https://doi.org/10.1007/s00248-001-1052-2
  20. Roger, V., Fonty, G., Komisarczuk-Bony, S. and Gouet, P. 1990. Effects of physicochemical factors on the adhesion to cellulose avicel of the ruminal bacteria Ruminococcus jlavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081
  21. Russell, J. B. and Rychlik, J. L. 2001. Factors that alter rumen microbial ecology. Science. 292:1119-1122 https://doi.org/10.1126/science.1058830
  22. Russell, J. B. and Wilson, D. B. 1996. Why are ruminal cellulolutic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 70: 1503-1509
  23. SAS. 1996. User's Guide. Version 6.12. Statistical Analysis System Inst. Inc. Cary NC. USA
  24. Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Anim. Sci. 43:910-929 https://doi.org/10.2527/jas1976.434910x
  25. Stahl. D. A.. Flesher. B.. Mansfield. H. R. and Montgomery. L. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:1079-1084
  26. Woese. C. R. 1987. Bacterial evolution. Microbiol. Rev. 51 :221-227
  27. Woese. C. R. 1994. There must be a prokaryote somewhere: microbiology's search for itself. Microbiol Rev. 58: 1-9
  28. 하종규, 이성실, 문양수, 김창현. 2005. 반추동물 영양생리학. 서울대학교출판부. pp. 122-249