• Title/Summary/Keyword: cellulose fabrics

Search Result 108, Processing Time 0.023 seconds

A Study on the Micropores of BTCA Finished Cotton Fabrics (BTCA로 방추가공된 면직물의 미세기공구조 측정)

  • 최연주;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.7
    • /
    • pp.1078-1084
    • /
    • 2002
  • Cotton fabrics were treated with 1,2,3,4-butanetetracarboxylic acid(BTCA) to impart durable press performance, which is formaldehyde-free DP finishing reagent. The pore structures of BTCA treated cottons were compared using a reverse gel permeation chromatographic technique(reverse GPC). A series consisting 4 kinds of water soluble sugars was used to study the elution characteristics of columns prepared from cotton fibers. From these data, differences in pore size distribution in the control and BTCA treated cottons were distinguished. BTCA crosslinks cellulose molecules provided wrinkle resistance to the treated cotton fabrics through ester linkages. Although crosslinking of cotton with BTCA reduced accessible internal volume across the entire range of pore size, differences in line pores were larger than in small pores. BTCA treated cotton exhibited reductions over 40% in large pore sizes.

A Study on the Burn-out Printing of Cellulose-blend Velvet (셀룰로오스계 파일직물의 탄화가공)

  • 김호정
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.5
    • /
    • pp.757-763
    • /
    • 1999
  • The burn-out technique is used to result in the velvet cloth being patterned in open and solid areas by carbonize the cellulose fiber. It is examined how to burn out the cellulose part of the velvet without damage of the other part. The print paste indalca solution is mixed with sodium hydrogensulfate and lycerine and then screen-printed on the back side of the velvet. The effects of process conditions such as concentration of sodium hydrogensulfate dry heat fixation temperature and time pull no. and glycerine contents on the properties of ground farics were investigated. The yellowness index and the breaking load of silk ground fabrics afected by the process conditions especially concentration of sodium hydrogensulfate dry heat fixation temperature.

  • PDF

A Study on the Durable Press Finishing of Cotton Fiber Treated with Polycarboxylic Acid (폴리카르복시 산 처리 면섬유의 DP가공에 관한 연구)

  • 이찬민;최철민
    • Textile Coloration and Finishing
    • /
    • v.9 no.6
    • /
    • pp.58-67
    • /
    • 1997
  • PTCA(1,2,3-propanetricarboxylic acid) and BTCA(1,2,3-butanetetracarboxylic acid) are selected as new nonformaldehyde agents for ester crosslinking of cotton cellulose to replace the traditional DMDHEU reagent. A goal of this research is to propose unknown ester mechanism of cotton cellulose by PTCA or BTCA using crystal structure model suggested by Meyer and Takahashi. In pursuit of these goals, we have treated 100% cotton broad cloth with PTCA or BTCA and different catalysts. They were used with $NaH_2PO_2,\;NaH_2PO_4,\;Na_2HPO_4,\;NaH_2PO_2,\;Na_3PO_4,$ catalysts to produce nonformaldehyde fabric finishes. Treatments were applied to all cotton fabrics using a pad-dry -cure process. The esterfication of cotton treated with BTCA or PTCA was investigated using Fourier transform infrared(FT-IR) spectra and the breaking strength, abrasion retention and discoloration properties were determined to prove the durable finished fabrics. Patterns with respect to abrasion resistance were more complex. Because PTCA and BTCA add-ons were comparable, the data suggest that the more effective catalysts, $NaH_2PO_2$ and mixed phosphate $NaH_2PO_2/NaH_2PO_4$) are effecting either a great number of crosslinks in the cotton or producing crosslinks that differ in actual structure.

  • PDF

A Study on Dyeing Effects of Onion′s Outer Shell under the Different Dyeing Conditions (염색조건에 따른 양파껍질의 염색효과에 관한 연구)

  • 정나영;이전숙;최경은
    • Korean Journal of Human Ecology
    • /
    • v.3 no.1
    • /
    • pp.51-63
    • /
    • 2000
  • The purpose of this study was to identify the best dyeing conditions using onion's outer shell. and to apply to the method in practical daily life. To do this. we extracted quercetin from onion's outer shell and dyed several natural fabrics such as cotton, slack mercerized cotton, ramie. and silk. under the different conditions. Dyed fabrics were Investigated in the aspect of dyeability and colorfastness. The effective conditions for the light-fastness and washing-fastness also have been studied. The results of the experiment were varied with such conditions as temperature. time. pH degree. and treatment and types of mordants. The results are as follows ; 1. Fabrics dyed with onion's outer shell showed excellent dyeability even though there were no mordants, and the silk fabric dyed better than both cotton and ramie fabric. Furthermore, in the cases of repeated dyeing and treatment of mordants using AIK(SO$_4$)$_2$.12$H_2O$ and CuSO$_4$,.5$H_2O$ dyeability of specimen had been improved 2. Cellulose fabrics such as cotton, mercerized cotton and ramie showed the best dyeability under relatively low temperature in the range of 20~4$0^{\circ}C$. On the contrary to cellulose fabric, silk fabric showed the best dyeability under higher dyeing temperature. All fabrics had the higest K/S value at pH 3 regardless of the kind of fiber 3. Dyeing colors varied with the kind of mordants. Colors were turned into yellow in AIK(SO$_4$)$_2$.12$H_2O$ into Yellow-red in CuSO$_4$,.5$H_2O$ , and into green-Yellow in FeSO$_4$.7$H_2O$. As mordants, AIK(SO$_4$)$_2$.12$H_2O$, CuSO$_4$,. 5$H_2O$. FeSO$_4$.7$H_2O$. gallic acid and tartaric acid were used and especially AIK(SO$_4$)$_2$.12$H_2O$ showed the best dyeability and colorfastness in repeated dyeing. Mordants such as AIK(SO$_4$)$_2$.12$H_2O$ made fabrics have better chroma and washing-fastness though the light-fastness was poorer than non mordanting. 4. Repeated dyeing brought us deep color. When fresh dyebath was used each time, the dyeability was increased as the experiment was repeated more. When dyed with used dyebath several times, improved dyeability could not be expected. The optimal using times of the used dyebath was twice.

  • PDF

Fine Structure and Physical Properties of Cotton Fibers and their Fabrics Treated with Liquid Ammonia, NaOH, and NaOH/Liquid Ammonia (액체암모니아, 수산화나트륨, 수산화나트륨/액체암모니아 처리한 면의 미세구조 및 물성)

  • 배소영;이문철;김홍성;이영희;김경환
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.47-54
    • /
    • 1994
  • Cotton fiber, NaOH-mercerized cotton fiber, cotton fabric, and NaOH-mercerized cotton fabric have been treated by liquid ammonia at -33.4$^{\circ}C$. The fine structures, bending properties, tensile strengthes, shrinkages for laundering, and wrinkle recoveries were studied. The treatment of cottons with liquid ammonia brought about the transition of crystal lattice ; transforming cellulose I crystal of original cotton to cellulose I and III crystal, and cellulose II crystal of mercerized cotton to cellulose II and III crystals. The degree of crystallinities were decreased in the order of liquid ammonia>NaOH/liquid ammonia>NaOH-treated cotton. However moisture regain and water absorbency for liquid ammonia-treated cotton were lower than that of NaOH-treated cotton because of a difference in swelling actions of the agents. It seems caused by intermicrofibrillar pores produced in swelling processes. The bending rigidity and bending hysteresis were decreased remarkly by liquid ammonia treatment. Therefore softness and dimensional stability were improved. The liquid amminia and NaOH/liquid ammonia-treated cottons moreover show excellent properties in tensile strength, anti-shrinkage for laundering, and wrinkle recovery.

  • PDF

Bicomponent Finishing of Cotton Fabrics(I) -Loess and Chitosan- (면의 복합가공(I) -황토와 키토산-)

  • Bae, Ki-Hyun;Kwon, Jung-Sook;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.10 no.4
    • /
    • pp.552-559
    • /
    • 2008
  • Recent days, various inner wears, sheets and interior goods are manufactured using materials dyed with loess emphasizing its improved blood circulation, metabolism, anti-bacterial, deodorizing properties, and far-infrared ray emissions. The purpose of this study is to investigate the effect of chitosan treatment on the dyeing of cotton fabric using loess as colorants. Particle size of loess, the morphology and dyeability(K/S) of chitosan crosslinked cotton fabrics, and washing durability of loess dyed cotton fabric were investigated. In this study, cotton fabrics were treated with a crosslinking agent, epichlorohydrin, in the presence of chitosan to improve the dyeing properties of cotton fabrics with natural dye by the chemical linking of chitosan to the cellulose structure. This process was applied by means of the conventional mercerizing process. The results obtained were as follows; Mean average diameter of loess was $1.13{\mu}m$. According to various conditions, the optimum dyeing conditions for cotton fabrics pretreated by 1% chitosan treatment was where 10%(owb) of loess was applied at $90^{\circ}C$ for 120minutes, while for cotton fabrics without chitosan treatment was where 15%(owb) of loess was applied at $90^{\circ}C$ for 150minutes. Overall, K/S value of loess dyed cotton fabric pretreated with 1% chitosan was higher than that of cotton fabrics without chitosan treatment. The Color fastness, washing fastness and light fastness of loess were excellent as 4-5grade.

The Characteristics of Exhumed Cotton Fabrics of the Middle Age of Yi Dynasty (朝鮮中期 出土된 綿織物의 理化學的 特性)

  • Lee, Jeong Sook;Kim, Sung Reon
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.8-15
    • /
    • 1996
  • Three pieces of cotton fabrics used for this study were exhumed in the Mt.Moo Deung near Kwang Ju in 1965. The fabrics were remains of Jang Heung Lim Si-the nephew's wife of General Kim Deok Ryeong. It was reported that Jang Heung Lim Si died in 1615. The cotton fabrics were classified into three, A, B and C, according to their color. The fabric A was inherent color of cotton, the fabric B was that of light brown and the fabric C was that of dark brown. The physical and chemical characteristics of the cotton fabrics were examined. In the meantime the construction of cotton fabrics and traditional dyeing of Yi dynasty were studied through various records. The results were as follows: 1. According to electromicroscopic examination, the lumen in the cotton fiber had not been developed enough, therefore the quality of cotton at that time was supposed to be not so excellent. 2. The results of chemical analysis indicated that: (1) While the copper number of the cotton fabric A was similar to that of bleached cotton, that of the fabric C was extremely high. (2) The amount of methylene blue absorption was much more than that of normal cotton. (3) The content of cellulose was less than that of normal cotton. (4) The degree of polymerization was less than that of normal cotton. From the results mentioned above, it was concluded that the cotton fabrics were oxidized slowly in the closed lime coffin for a long period of time. From this process of oxidization and deterioration, the degree of polymerization was decreased through depolymerization, and carboxyl groups were produced by the oxidization at reducing end groups. 3. It was confirmed that the cotton fabric C was dyed by the juice of immature persimmon. Thus, it was inferred that the large amount of copper number of cotton fabric C was derived from phenolic OH groups of tannins having high reducing properties in persimmon.

  • PDF

The Dyeing Properties of Cellulose and Protein Fabrics by Yellow Natural Dyes (황색계 천연염료에 의한 셀룰로스, 단백질계 섬유의 염색)

  • Shin, Young-Joon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.1
    • /
    • pp.135-145
    • /
    • 2017
  • In order to analysis on color difference of yellow natural dyes, I have dyed cellulose and protein fabrics. The results of experiment have been analysed by wavelength of maximum absorption, amounts of dye uptake, color difference, Hunter's value and Munsell's value. The results from these analyses are as follows : Bud of pagoda tree, Amur cork, and Curcuma showed greenish yellow color, Gardenia Jasminoides showed reddish yellow color. Barberry root showed reddish yellow color with post-mordanting method on cellulose fabric. Moreover, Dupioni silk was dyed in reddish yellow color by Barberry root and Rhubarb. In addition to Chroma index, Gardenia Jasminoides and Curcuma showed clear color overall. However, dyeing rayon and silk by Barberry root, and dyeing silk by Rhubarb showed clear color. Comparing all the results to actual dyed materials, Bud of pagoda tree had small dye uptake, and both ${\Delta}a$ and ${\Delta}b$ value were short which can't recognized the yellow color easily. Dye uptake of Amur cork and Gardenia Jasminoides was small just like Bud of pagoda tree. However, ${\Delta}b$ value order was Gardenia Jasminoides>Amur cork>Bud of pagoda tree. Therefore, Gardenia Jasminoides recognized reddish yellow because of big value of red color and yellow color. In case of Barberry root and Rhubarb which have larger dye uptake, Baberry root recognized yellow color on rayon only, and couldn't recognized yellow color on bleached cotton fabric, ramie, silk, and dupioni silk. Rhubarb recognized yellow color on rayon with pre-mordanting method only, but recognized silk and dupioni silk as brown like color. Moreover, we could not analyze color by dye uptake, Lab, and H(v/c) for Barberry root and Rhubarb. As a result, I think we need to attach color table for the research paper which handled the color of dyeing materials.

  • PDF