• Title/Summary/Keyword: cellulose II

Search Result 197, Processing Time 0.032 seconds

Cloning and Characterization of Cellulase Gene (cel5B) from Cow Rumen Metagenome

  • Kang, Tae-Ho;Kim, Min-Keun;Barman, Dhirendra Nath;Kim, Jung-Ho;Kim, Hoon;Yun, Han-Dae
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.129-137
    • /
    • 2012
  • A carboxymethyl cellulase gene, cel5B, was cloned, sequenced, and expressed in Escherichia coli. pRCS20 in E. coli was identified from metagenomic cosmid library of cow rumen for cellulase activity on a carboxymethyl cellulose agar plates. Cosmid clone (RCS20) was partially digested with Sau3AI, ligated into BamHI site of pBluescript II SK+ vector, and transformed into E. coli $DH5{\alpha}$. The insert DNA of 1.3 kb was obtained, designated cel5B, which has the activity of hydrolyzation of CMC. The cel5B gene had an open reading frame (ORF) of 1,059 bp encoding 352 amino acids with a signal peptide of 48 amino acids and the conserved region, VIYEIYNEPL, belongs to the glycosyl hydrolase family 5. The molecular mass of Cel5B protein expressed from E. coli $DH5{\alpha}$ exhibited to be about 34 kDa by CMC-SDS-PAGE. The optimal pH was 8.0, and the optimal temperature was about $50^{\circ}C$ for its enzymatic activity.

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Non-biopolymeric Solutions (II)

  • Jang, Chun-Hag;Kim, Chang-Hong;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.332-335
    • /
    • 1987
  • This paper is a continuation of our previous $paper,^1$ and deals with Eq.(1) (see the text), which was theoretically derived in the $paper,^1$$ [{\eta}]^f\; and\; [{\eta}]^0$ is the intrinsic viscosity at stress f and f = O, respectively. Equation (1) predicts how $[{{\eta}}]^f / [{\eta}]^0$ changes with stress f, relaxation time ${\beta}_2$ of flow unit 2 and a constant $c_2$ related with the elasticity of molecular spring of flow unit 2. In this paper, Eq.(1) is applied to a biopolymer, e.g., poly (${\gamma}$-benzyl L-glutamate), and nonbiopolymers, e.g., polyisobutylene, polystyrene, polydimethylsiloxane and cellulose triacetate. It was found that the $c_2$ factor is zero for non-biopolymers while $c_2{\neq}0$ for biopolymers as found $previously.^1$ Because of the non-Newtonian nature of the solutions, the ratio $[{{\eta}}]^f / [{\eta}]^0$ drops from its unity with increasing f. We found that the smaller the ${\beta}_2,$ the larger the $f_c$ at which the viscosity ratio drops from the unity, vice versa.

Studies on Improving the nutritive value of Rice straw by Fermentation with Lyophyllum decastes -II. Effect of $H_2O_2\;and\;2Na_2CO_3{\cdot}3H_2O_2$ treatments- (Lyophyllum decastes를 이용(利用)한 볏짚의 발효사료(醱酵飼料)에 관한 연구(硏究) -ll. 과산화수소(過酸化水素) 및 과탄산(過炭酸)소다 처리(處理)의 영향(影響)-)

  • Hong, Jae-Sik;Kim, Dong-Han;Lee, Keug-Ro;Kim, Myung-Kon;Kim, Young-Soo;Yeo, Kyu-Young
    • The Korean Journal of Mycology
    • /
    • v.16 no.3
    • /
    • pp.135-143
    • /
    • 1988
  • The treatments of $H_2O_2$ were more effective on the degradation of difficult digestible materials by increasing the treatment concentration and adjusting the pH to alkaline. The smaller particle size of rice straw was, the more these effect. $2N_2CO_3{\cdot}3H_2O_2$, didn't need to adjust on pH, but the effect of treatment was lower than $H_2O_2$(pH 11.5) treatment. Lignin and hemicellulose content were decreased by the alkaline peroxide treatments. The fermentation of rice straw which pretreated with alkaline peroxide, the content of total nitrogen and ash increased. And NDF, hemicellulose and lignin were decreased, and ADF and cellulose decreased as the lower concentra­tion of treatment. The digestibility of rice straw which treated alkaline peroxide was increased with increasing the treatment concentration. The treatment of 12% $H_2O_2$(pH 11.5) and 12% $2Na_2^-CO_3{\cdot}3H_2O_2$ increased the digestibility from 31.1% to 89.4% and 76.8% compared with nontreated rice straw, respectively. The digestibility of fermented rice straw which pretreated with alkaline peroxide was effectively increased as the pretreatment concentration was low. Semi-dry treat­ment of $H_2O_2$ decreased the ADF and cellulose, and exhibited the 57.5% of digestjbility. Fer­mentation of rice straw which semi-dry treated with 4% $H_2O_2$, increased the digestibility from 33.4% to 63.4% compared with control.

  • PDF

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects (셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화)

  • Kim, Eun Ae;Bai, Byong Chol;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.

Cloning and Characterization of Cellulase Gene (cel5C) from Cow Rumen Metagenomic Library (소 반추위 메타게놈에서 새로운 섬유소분해효소 유전자(cel5C) 클로닝 및 유전산물의 특성)

  • Kim, Min-Keun;Barman, Dhirendra Nath;Kang, Tae-Ho;Kim, Jung-Ho;Kim, Hoon;Yun, Han-Dae
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.437-446
    • /
    • 2012
  • A metagenomic library of cow rumen in the pCC1FOS phage vector was screened in $E.$ $coli$ EPI300 for cellulase activity on carboxymethyl cellulose agar plates. One clone was partially digested with $Sau$3AI, ligated into the $Bam$HI site of the pBluescript II SK+ vector, and transformed into $E.$ $coli$ $DH5{\alpha}$. We obtained a 1.5 kb insert DNA, designated $cel$5C, which hydrolyzes carboxymethyl cellulose. The cel5C gene has an open reading frame (ORF) of 1,125 bp encoding 374 amino acids. It belongs to the glycosyl hydrolase family 5 with the conserved domain LIMEGFNEIN. The molecular mass of the Cel5C protein induced from $E.$ $coli$ $DH5{\alpha}$, as analyzed by CMC SDS-PAGE, appeared to be approximately 42 kDa. The enzyme showed optimum cellulase activity at pH 4.0, and $50^{\circ}C$. We examined whether the $cel$5C gene comes from the 49 identified cow rumen bacteria using PCR. No PCR bands were identified, suggesting that the $cel$5C gene came from the unidentified cow rumen bacteria.

Anatomical Characteristics of Kenaf Grown in Reclaimed Land - Volumetric Composition and Cell Dimension - (간척지에서 재배된 양마(kenaf)의 해부학적 특성(II) - 구성 비율 및 세포의 치수 -)

  • Lee, Seon-Hwa;Kwon, Sung-Min;Um, Gi Jeung;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.11-18
    • /
    • 2008
  • Anatomical characteristics of volumetric composition, fiber length, vessel diameter, and crystalline properties of cellulose in kenaf (Hibiscus cannabinus L.) planted in the reclaimed land of Buan-si, Korea were examined to understand the growth characteristics using a light microscopy and an X-ray diffraction method. The samples of kenaf were taken from six positions (3 cm, 35 cm, 70 cm, 105 cm, 280 cm, and 320 cm) of each stem over the growth period (July, August, September, and October) after seeding in the mid-May. In the kenaf stem, phloem constituted 10 to 15 %, xylem 66 to 82%, and pith 7 to 19%. The ray, bast fiber, and remainder comprised 50%, 20%, and 30% of the phloem, respectively. The volume of vessel, ray, and fiber in the xylem was approximately 10, 15, and 75%, respectively. The proportion of cell wall was 30.92% at the base of stem and 46.40% at the top of stem, respectively. The average length of bast fiber and xylem fiber was about 2.8 mm and 0.9 mm, respectively. Radial and tangential diameters of vessel increased with the increase of growth period, while they decreased with increasing the stem height. Relative crystallinity ranged from 70 to 79% in phloem and from 50 to 56% in xylem. Cellulose crystallite width was about 3 nm both in the phloem and xylem. Thus, the volumetric composition and cell dimensions in the phloem and xylem appeared to be varied with the growth period and the stem height.

Classification According to Site of Action of Paddy Herbicides Registered in Korea (국내 수도용 제초제의 작용기작별 분류)

  • Park, Jae-Eup;Kim, Sang-Su;Kim, Young-Lim;Kim, Min-Ju;Ha, Heun-Young;Lee, In-Yong;Moon, Byung-Chul;Ihm, Yang-Bin
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.165-173
    • /
    • 2014
  • This review study was conducted to recommend the effective use of herbicide mixtures in Korea. The herbicide ingredients by Herbicide Resistancce Action Committee (HRAC) was classified into 23 groupes according to the mode of action (acetyl CoA carboxylase inhibitors, acetolactate synthase, photosystem I and II inhibitors, protoporphyrinogen oxidase inhibitors, carotenoid biosynthesis inhibitors, enolpyruvyl shikimate-3-phosphate synthase inhibitors, glutamine synthetase inhibitors, dihydropteroate synthetase inhibitors, mitosis inhibitors, cellulose inhibitors, oxidative phosphorylation uncouplers, fatty acid and lipid biosynthesis inhibitors, synthetic auxins, auxin transport inhibitors and potential nucleic acid inhibitors or non-descript mode of action). The rice herbicide mixtures registered in Korea were classified based on the guideline of HRAC. Accordingly, such a classification system for resistance management can help to avoid continuous use of the herbicide having the same mode of action in the same field.

Immunostimulating Activity and Characterization of Polysaccharides from Mycelium of Phellinus linteus

  • Lee, Jae Hoon;Soo Muk Cho;Kyung Sik Song;Sang Bae Han;Hwan Mook Kim;Nam Doo Hong;Ick Dong Yoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.213-218
    • /
    • 1996
  • Hot-water extract, Fr. 1, of Phellinus linteus mycelium was fractionated into Fr. 2, 3, 4, and 5 by the difference of solubility in ethanol. The polysaccharide fractions were studied for their immunostimulating activity on in vitro T-independent polyc1onal antibody response to trinitrophenyl-haptened SRBC (sheep red blood cell). The Fr. 4 with the highest immunostimulating activity was subjected to DEAE-cellulose ion exchange chromatography and gave five fractions, 4-I, II, III, IV, and V. The in vitro immunostimulating assay of the five fractions showed that 4-I and 4-III had a similar activity to that of LPS but the other fractions had low activity. By analyses of chemical composition and HPLC, all fractions obtained were found to be heteropolysaccharide-protein complex. The molecular weights ranged from 9, 000 to 15, 000. Sugar analyses showed that glucose, galactose, mannose, arabinose, and xylose were main component. Uronic acid and amino sugar were also detected in the fractions. It should be noted that the molecular weight (15, 000) of 4-III was very small and the structure of 4-III may be different from the known immunostimulating branched $\beta$-(1longrightarrow3)-glucan.

  • PDF

Evaluation of Biomolecular Interactions of Sulfated Polysaccharide Isolated from Grateloupia filicina on Blood Coagulation Factors

  • Athukorala, Yasantha;Jung, Won-Kyo;Park, Pyo-Jam;Lee, Young-Jae;Kim, Se-Kwon;Vasanthan, Thava;No, Hong-Kyoon;Jeon, You-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.503-511
    • /
    • 2008
  • An edible marine red alga, Grateloupia filicina, collected from Jeju Island of Korea was hydrolyzed by cheap food-grade carbohydrases (Viscozyme, Celuclast, AMC, Termamyl, and Ultraflo) to investigate its anticoagulant activity. Among the tested enzymatic extracts of G. filicina, a Termamyl extract showed the highest anticoagulant activity. Anion-exchange chromatography on DEAE-cellulose and gel-permeation chromatography on Sepharose-4B were used to purify the active polysaccharide from the crude polysaccharide fraction of G. filicina. The purified sulfated polysaccharide (0.42 sulfate/total sugar) showed ${\sim}1,357kDa$ molecular mass and was comprised mainly of galactose(98%) and 1-2% of glucose. The sample showed potential anticoagulant activity on activated partial thromboplastin time (APTT) thrombin time (TT) assays. The purified G. filicina anticoagulant (GFA) inhibited the coagulation factor X (92%), factor II (82%), and factor VII (68%) of the coagulation cascade, and the molecular interaction (protein-polysaccharide) was highly enhanced in the presence of ATIII (antithrombin III). The dissociation constant of polysaccharide towards serine proteins decreased in the order of FXa (58.9 nM) >FIIa (74.6 nM) >FVII (109.3 nM). The low/less cytotoxicity of the polysaccharide benefits its use in the pharmaceutical industry; however, further studies that would help us to elucidate the mechanism of its activity are needed.

New High Recovery Membrane Modules for Desalination

  • Fujiwara, Nobuya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.1-12
    • /
    • 2002
  • Desalination by reverse osmosis (RO), which first entered commercial use in the 1970s, was initially mainly used for treating brackish water. Technological progress led to the development of an RO membrane enabling single-pass seawater desalination. Toyobo succeeded in developing a single-pass seawater desalination RO module composed of hollow fiber type membranes made of cellulose triacetate in 1978, and then in 1979 began production of the first commercially available double-element module. This double-element module has many advantages suitable for seawater desalination. It has high chlorine tolerance and high salt rejection, derived from the properties of the membrane material, and it is highly resistant to fouling and scaling matters due to the unique flow pattern and fiber bundle configuration. These advantages help to explain why the Toyobo double-element module has been used so successfully at the many seawater desalination plants around the world. Since the 1980s, large plants capable of desalinating several tens of thousands of cubic meters a day have sprung up around the Mediterranean and In the Middle East. The Jeddah RO Phase I Plant, which has a capacity of 56, 800m$^3$/day, went into operation in 1989. In 1994, the same sized Phase II Plant came on stream, giving the plant a huge total capacity of 113, 600m$^3$/day. The plant constructor Mitsubishi Heavy Industries, Ltd. (MHI), and the RO membrane manufacturer Toyobo Co., Ltd. In 1998, the world's largest RO seawater desalination plant in operation, which has a capacity of 128, 000m$^3$/day and is run by Saudi Arabia's Saline Water Conversion Corporation (SWCC), went into operation at Yanbu. RO seawater desalination technology has thus already reached the stage of full-scale commercial use. In order to encourage its wider use, however, RO desalination needs to be made more economical by lowering construction and water treatment costs. Toyobo has therefore developed a new economical RO desalination system by a recovery ratio of 60% using a high-pressure module with a high product flow rate. In 2000, Toyobo high recovery membrane module was selected for the largest seawater desalination plant in Japan, which has a capacity of 50, 000m$^3$/day.

  • PDF