Browse > Article

Cloning and Characterization of Cellulase Gene (cel5B) from Cow Rumen Metagenome  

Kang, Tae-Ho (Division of Applied Life Science (BK21 Program), Gyeongsang National Univ.)
Kim, Min-Keun (Gyeongsangnam-do Agricultural Research and Extension Service)
Barman, Dhirendra Nath (Division of Applied Life Science (BK21 Program), Gyeongsang National Univ.)
Kim, Jung-Ho (Department of Agricultural Chemistry, Sunchon National University)
Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University)
Yun, Han-Dae (Division of Applied Life Science (BK21 Program), Gyeongsang National Univ.)
Publication Information
Journal of agriculture & life science / v.46, no.2, 2012 , pp. 129-137 More about this Journal
Abstract
A carboxymethyl cellulase gene, cel5B, was cloned, sequenced, and expressed in Escherichia coli. pRCS20 in E. coli was identified from metagenomic cosmid library of cow rumen for cellulase activity on a carboxymethyl cellulose agar plates. Cosmid clone (RCS20) was partially digested with Sau3AI, ligated into BamHI site of pBluescript II SK+ vector, and transformed into E. coli $DH5{\alpha}$. The insert DNA of 1.3 kb was obtained, designated cel5B, which has the activity of hydrolyzation of CMC. The cel5B gene had an open reading frame (ORF) of 1,059 bp encoding 352 amino acids with a signal peptide of 48 amino acids and the conserved region, VIYEIYNEPL, belongs to the glycosyl hydrolase family 5. The molecular mass of Cel5B protein expressed from E. coli $DH5{\alpha}$ exhibited to be about 34 kDa by CMC-SDS-PAGE. The optimal pH was 8.0, and the optimal temperature was about $50^{\circ}C$ for its enzymatic activity.
Keywords
Cow rumen metagenome; Cosmid library; cel5B; CMC-SDS-PAGE;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alrenbuchner, J. 1993. A new λRES vector with a built-in Tn 1721-encoded excision system. Gene 123: 63-68.   DOI
2 Berger, E., W. A. Jones, D. T. Jones, and D. R. Woods. 1989. Cloning and sequencing of an endoglucanase (end1) gene from Butyrivibrio fibrisolvens H17c. Mol. Gen. Genet. 219: 193-198. Birsan, C., P. Johnson, M. Joshi, A. MacLeod, L. McIntosh, V. Monem, M. Nitz, D. R. Rose, D. Tull, W. W. Wakarchuck, Q. Wang, R. A. J. Warren, A. White, and S. G. Withers. 1998. Mechanisms of cellulases and xylanases. Biochem. Soc. Trans. 26: 156-160.   DOI
3 Cho, K. M., E. C. Shin, W. J. Lim, S. Y. Hong, B. R. Choi, J. M. Kang, S. M. Lee, Y. H. Kim, S. J. Cho, H. Kim, and H. D. Yun. 2006. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J. Microbiol. Biotechnol. 16: 92-101.
4 Dehority, B. A. and C. G. Orpin. 1997. Development of, and natural fluctuation in, rumen microbial populations. In: P. N. Hobson and C. S. Stewart (ed.). The Rumen Microbial Ecosystem. pp 196-245. Chapman & Hall, London.
5 Ferrer, M., O. V. Golyshina, T. N. Chernikova, A. N. Khachane, D. Reyes-Duarte, V. A. P. Martins Dos Santos, C. Strompl, K. Elborough, G. Jarvis, A. Neef, M. M. Yakimov, K. N. Timmis, and Golyshin., P. N. 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol. 7: 1996-2010.   DOI
6 Fields, M. W., J. B. Russell, and D. B. Wilson. 1998. The role of ruminal carboxymethyl cellulases in the degradation of $\beta$-glucans from cereal grain. FEMS Microbiol. Ecol. 27: 261-268.
7 Frederick, M. A., B. Roger, M. David, J. G. Seidmal, A. S. John, and S. Kevin. 1999. Short protocols in molecular biology, 4th, pp. 2-13.
8 Hardy, K. G. 1987. Purification of bacterial plasmid. pp. 1-6, Plasmid IRL Press.
9 Henrissat, B., T. T. Teeri, and R. A. J. Warren. 1998. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 425: 352-354.   DOI
10 Hristov, A. N., T. A. McAllister, and K. J. Cheng. 1998. Stability of exogenous polysaccharide-degrading enzymes in the rumen. Anim. Feed. Sci. Technol. 76: 161-168.   DOI
11 Hristov, A. N., T. A. McAllister, and K. J. Cheng. 1998a. Effect of dietary or abomasal supplementation of exogenous polysaccharide-degrading enzymes on rumen fermentation and nutrient digestibility. J. Anim. Sci. 76: 3146-3156.   DOI
12 Hungate, R. E. 1966. The rumen and its microbe. Academic Press, Inc., New York.
13 Kudo, H., K. J. Cheng, and J. W. Costerton. 1987. Electron microscopic study of the methyl cellulosemediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can. J. Microbiol. 33: 267-272.   DOI
14 Kuriki, R., S. Okada, and T. Imanaka. 1988. New type of pullulanase from Bacillus strearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. J. Bacteriol. 170: 1554-1559.   DOI
15 Lam, T. B. T., K. Iiyama, and B. A. Stone. 1990. Primary and secondary walls of grasses and other forage plants: taxonomic and structural considerations. In Akin D. E., L. G. Ljungdahl, J. R. Wilson, and P. J. Harris. (eds) Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp 43-69. Elsevier Science Publishers, London.
16 Lee, R. L., J. W. Paul, H. Z. Willem, and S. P. Isak. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 739.   DOI
17 Lim, W. J., S. R. Park, S. J. Cho, M. K. Kim, S. K. Ryu, S. Y. Hong, W. T. Seo, H. Kim, and H. D. Yun. 2001. Cloning and characterization of an intracellular isoamylase gene from Pectobacterium chrysanthemi PY35. Biochem. Biophys. Res. Commun. 287: 348-354.   DOI
18 McNeil, M., A. G. Darvill, S. C. Fry, and P. Albersheim. 1984. Structure and function of the primary cell wall of plants. Ann. Rev. Biochem. 53: 625-663.   DOI
19 Miron, J., D. Ben-Ghedalia, and M. Morrison. 2001. Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy. Sci. 84: 1294-1309.   DOI
20 Mittendorf, V. and J. A. Thomson. 1993. Cloning of an endo-(1, 4)-beta-glucanase gene, celA, from the rumen bacterium Clostridium sp. ('C. longisporum') and characterization of its product, CelA, in Escherichia coli. J. Gen. Microbiol. 139: 3233-3242.   DOI
21 Satoshi, K. and K. Yasuo. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204: 361-366.   DOI
22 Park, S. R., M. K. Kim, J. O. Kim, S. J. Cho, Y. U. Cho, and H. D. Yun. 2000. Cloning and Sequencing of cel5Z Gene from Erwinia chrysanthemi PY35. Mol. Cells. 10: 269-274.
23 Poole, D. M., G. P. Hazlewood, J. I. Laurie, P. J. Barker, and H. J. Gilbert. 1990. Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB. Mol. Gen. Genet. 223: 217-223.
24 Sambrook, J. and D. W. Russell. 2001. Molecular cloning. A Laboratory Manual, 3th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
25 Teather, R. and P. J. Wood. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 770-780.
26 Teeri, T. T. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends. Biotechnol. 15: 160-167.   DOI
27 Wang, F., F. Li, G. Chen, and W. Liu. 2009. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbio.l Res. 164: 650-657.   DOI
28 Weimer, P. J., G. C. Waghorn, O. L. Odt, and D. R. Mertens. 1999. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J. Dairy. Sci. 82: 122-134.   DOI
29 Withers, S. G. 2001. Mechanisms of glycosyl transferases and hydrolyses. Carbohydr. Polym. 44: 325-337.   DOI