Browse > Article

Evaluation of Biomolecular Interactions of Sulfated Polysaccharide Isolated from Grateloupia filicina on Blood Coagulation Factors  

Athukorala, Yasantha (Faculty of Applied Marine Science, Cheju National University)
Jung, Won-Kyo (Department of Chemistry, Pukyong National University)
Park, Pyo-Jam (Department of Biotechnology, Konkuk University)
Lee, Young-Jae (Department of Veterinary Science, Cheju National University)
Kim, Se-Kwon (Department of Chemistry, Pukyong National University)
Vasanthan, Thava (Department of Agricultural, Food and Nutritional Science, University of Alberta)
No, Hong-Kyoon (Department of Food Science and Technology, Catholic University of Daegu)
Jeon, You-Jin (Faculty of Applied Marine Science, Cheju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 503-511 More about this Journal
Abstract
An edible marine red alga, Grateloupia filicina, collected from Jeju Island of Korea was hydrolyzed by cheap food-grade carbohydrases (Viscozyme, Celuclast, AMC, Termamyl, and Ultraflo) to investigate its anticoagulant activity. Among the tested enzymatic extracts of G. filicina, a Termamyl extract showed the highest anticoagulant activity. Anion-exchange chromatography on DEAE-cellulose and gel-permeation chromatography on Sepharose-4B were used to purify the active polysaccharide from the crude polysaccharide fraction of G. filicina. The purified sulfated polysaccharide (0.42 sulfate/total sugar) showed ${\sim}1,357kDa$ molecular mass and was comprised mainly of galactose(98%) and 1-2% of glucose. The sample showed potential anticoagulant activity on activated partial thromboplastin time (APTT) thrombin time (TT) assays. The purified G. filicina anticoagulant (GFA) inhibited the coagulation factor X (92%), factor II (82%), and factor VII (68%) of the coagulation cascade, and the molecular interaction (protein-polysaccharide) was highly enhanced in the presence of ATIII (antithrombin III). The dissociation constant of polysaccharide towards serine proteins decreased in the order of FXa (58.9 nM) >FIIa (74.6 nM) >FVII (109.3 nM). The low/less cytotoxicity of the polysaccharide benefits its use in the pharmaceutical industry; however, further studies that would help us to elucidate the mechanism of its activity are needed.
Keywords
Grateloupia filicina; enzymatic hydrolysis; anticoagulant activity; ATIII; surface plasmon resonance;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Athukorala, Y., K. W. Lee, S. K. Kim, and Y. J. Jeon. 2007. Anticoagulant activity of marine algae collected from Jeju Island in Korea. Bioresour. Technol. 98: 1711-1716   DOI   ScienceOn
2 Church, F. C., J. B. Meade, E. R. Treanor, and H. C. Whinna. 1989. Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin. J. Biol. Chem. 264: 3618-3623
3 Dave, E. W., K. Fujikawa, K. Kurachi, and W. Kisiel. 1979. The role of serine proteases in the blood coagulation cascade. Adv. Enzymol. 48: 277-318
4 Mossman, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63   DOI
5 Sik, H. K., Y. Kim, S. H. Kim, and S. Oh. 2007. Characterization and purification of acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP1B. J. Microbiol. Biotechnol. 17: 774-783   과학기술학회마을
6 Travis, J. G. and S. Salvesen. 1983. Human plasma proteinase inhibitors. Annu. Rev. Biochem. 52: 655-709   DOI   ScienceOn
7 Heo, S. J., K. W. Lee, C. B. Song, and Y. J. Jeon. 2003. Antioxidant activity of enzymatic extracts from brown seaweeds. Algae 18: 71-81   DOI
8 Uehara, T., M. Takeshita, and M. Maeda. 1992. Studies on anticoagulant-active arabinan sulfates from the green alga, Codium latum. Carbohydr. Res. 235: 309-311   DOI
9 Dubok, C., J. M. Maeng, J. L. Ding, and W. S. Cha. 2007. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J. Microbiol. Biotechnol. 17: 1369-1378   과학기술학회마을
10 Matsubara, K., Y. Matsuura, K. Hori, and K. Miyazawa. 2000. An anticoagulant proteoglycan from the marine green alga, Codium pugniformis. J. Appl. Phycol. 12: 9-14   DOI   ScienceOn
11 Saito, H., T. Yamagata, and S. Suzuki. 1968. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J. Biol. Chem. 243: 1536-1542
12 Desai, U. R. 2004. New antithrombin-based anticoagulants. Med. Res. Rev. 24: 151-181   DOI   ScienceOn
13 Boneu, B. 2000. Low molecular weight heparins: Are they superior to un-fractionated heparins to prevent and to treat deep vein thrombosis? Thromb. Res. 100: 113-120   DOI   ScienceOn
14 Mourano, P. A. S. and M. S. Pereira. 1999. Searching for alternatives to heparin: Sulfated fucans from invertebrates. Trends Cardiovasc. Med. 9: 225-232   DOI   ScienceOn
15 Shen, M. H., J. S. Kim, K. Sapkota, S. E. Park, B. S. Choi, S. Kim, H. H. Lee, C. S. Kim, H. S. Chun, C. N. Ryoo, and S. J. Kim. 2007. Purification, characterization, and cloning of fibrinolytic metalloprotease from Pleurotus ostreatus mycelia. J. Microbiol. Biotechnol. 17: 1271-1283.   과학기술학회마을
16 Shanmugam, S. and K. H. Mody. 2000. Heparonid active sulfated polysaccharides from marine algae as potential blood coagulant agents. Curr. Sci. 79: 1672-1683
17 Farias, W. R. L., A. P. Valente, M. S. Pereira, and A. S. Mourao. 2000. Structure and anticoagulant activity of sulfated galactans. J. Biochem. 38: 29299-29307
18 Kuda, T., E. Taniguchi, M. Nishizawa, and Y. Araki. 2002. Fate of water-soluble polysaccharides in dried Chorda filum, a brown alga during water washing. J. Food Composit. Anal. 15: 3-9   DOI   ScienceOn
19 Athukorala, Y., K. N. Kim, and Y. J. Jeon. 2006. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem. Toxicol. 44: 1065-1074   DOI   ScienceOn
20 Jung, W. K., Y. J. Je, H. J. Kim, and S. K. Kim. 2002. A novel anticoagulant protein from Sacapharca broughtonii. J. Biochem. Mol. Biol. 35: 199-205   DOI
21 Shobe, J., C. D. Dickinson, T. S. Edgington, and W. Ruf. 1999. Macromolecular substrate affinity for the tissue factor-factor VIIa complex is independent of scissile bond ddocking. J. Biol. Chem. 274: 24171-24175   DOI
22 Rajapaksha, N., W. K. Jung, E. Mendis, S. H. Moon, and S. K. Kim. 2005. A novel anticoagulant derived from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sci. 22: 2607-2619
23 Jin, J. H. and H. J. Kwon. 2006. Chemical genomics with natural products. J. Microbiol. Biotechnol. 16: 651-660   과학기술학회마을
24 Carmichael, J., W. G. DeGraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchell. 1987. Evaluation of a tetrazolium-based semiautomatic colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 47: 936-942
25 Chaplin, M. F. and J. F. Kennedy. 1994. Carbohydrate Analysis, Second Edition. Oxford University Press Inc., New York
26 Chevolvet, L., A. Foucault, N. Kervarec, C. Sinquin, A. M. Fisher, and C. Boisson-Vidal. 1999. Further data on the structure of the brown seaweeds fucans: Relationship with anticoagulant activity. Carbohydr. Res. 319: 154-165   DOI   ScienceOn
27 Jordan, R. E., G. M. Oosta, W. T. Gardner, and R. D. Rosenberg. 1980. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J. Biol. Chem. 255: 10081-10090
28 Pereira, M. G., N. M. B. Benevides, M. R. S. Melo, A. P. Valente, F. R. Melo, and P. A. S. Mourao. 2005. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr. Res. 340: 2015-2023   DOI   ScienceOn
29 Siddhanta, A. K., M. Shanmugam, K. H. Mody, A. M. Goswami, and B. K. Ramavat. 1999. Sulphated polysaccharides of Codium dwarkense Boergs from the west coast of India: Chemical composition and blood anticoagulant activity. Int. J. Biol. Macromol. 26: 151-154   DOI