• Title/Summary/Keyword: cellulase and xylanase

Search Result 169, Processing Time 0.026 seconds

Enhancing the Enzymatic Activity of the Multifunctional β-Glycosyl Hydrolase (Cel44C-Man26AP558) from Paenibacillus polymyxa GS01 Using DNA Shuffling (DNA Shuffling을 이용한 Paenibacillus polymyxa GS01의 다기능 β-Glycosyl Hydrolase (Cel44C-Man26AP558) 효소 활성 증가)

  • Kang, Young-Min;Kang, Tae-Ho;Yun, Han-Dae;Cho, Kye-Man
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.73-78
    • /
    • 2012
  • We previously reported that the truncated Cel44C-$Man26A_{P558}$ ${\beta}$-glycosyl hydrolase protein exhibits multifunctional activities, including cellulase, xylanase, and lichenase. DNA shuffling of the truncated Cel44C-$Man26A_{P558}$ enzyme was performed to enhance the enzymatic activity of the multifunctional ${\beta}$-glycosyl hydrolase. Two mutant enzymes, M2Cel44C-$Man26A_{P558}$ that carries one mutation (P438A) and M21Cel44C-$Man26A_{P558}$ that carries two mutations (A273T and P438A) were obtained. The enzymatic activity of the M21Cel44C-$Man26A_{P558}$ double mutant was lower than enzymatic activity of the single mutant (M2Cel44C-$Man26A_{P558}$). However, both mutants displayed the enhancements in their enzyme activities that were ${\approx}1.3$- to 2.2-fold higher than the original enzymatic activity in Cel44C-$Man26A_{P558}$. In particular, the mutant M2Cel44C-$Man26A_{P558}$ exhibited an approximate 1.5- to 2.2-fold increase in the cellulase, xylanase, and lichenase activities in comparison with the control (Cel44C-$Man26A_{P558}$). The optimum cellulase, linchenase, and xylanase activities of ${\beta}$-glycosyl hydrolase were observed at pH 7.0, pH 7.0 and pH 6.0, respectively. These results, therefore, suggest that the amino acid residue Ala438 plays important roles in the enhancement of the activity of multifunctional ${\beta}$-glycosyl hydrolase.

효소처리에 의한 제지적성 개선

  • 김형진;조병묵
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.39-46
    • /
    • 2000
  • In pulp and papermaking process, enzymatic treatment of pulp fibres has been a topic of increasing interest in last decade. Lots of patents, papers and research reports were published on the application of enzymes in the fields of enzymatic bleaching, deinking, slime control, pitch control, waste water treatment and fibre modification. Cellulase and hemicellulase are the principal enzymes used for the modification of fibre property. This study was carried out for determinating the behaviors of enzyme to pulp fibres. A commercial enzyme, Denimax BT which is consisted with cellulase and hemicellulase, was treated to the kraft pulp produced from domestic hardwood mixtures. Results were mainly concentrated on the behaviors of freeness, drainability and fines content of fibres, and physical properties of paper with enzyme treatment. The freeness levels and dewatering ability were developed, and the fines contents were decreased. The creation of fines were controlled by the method of pre-enzyme treatment prior to fibre beating. The mechanical strength of paper, like tensile, burst, tear strength and folding endurance, were remarkably improved by the pre-enzyme treatment.

  • PDF

Efficient Recovery of Lignocellulolytic Enzymes of Spent Mushroom Compost from Oyster Mushrooms, Pleurotus spp., and Potential Use in Dye Decolorization

  • Lim, Seon-Hwa;Lee, Yun-Hae;Kang, Hee-Wan
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.214-220
    • /
    • 2013
  • This study was conducted in order to perform efficient extraction of lignocellulolytic enzymes amylase (EC 3.2.1.1), cellulase (EC 3.2.1.4), laccase (EC 1.10.3.2), and xylanase (EC 3.2.1.8) from spent mushroom compost (SMC) of Pleurotus ostreatus, P. eryngii, and P. cornucopiae. Optimal enzyme recovery was achieved when SMCs were extracted with 50 mM sodium citrate (pH 4.5) buffer at $4^{\circ}C$ for 2 hr. Amylase, cellulase, and xylanase activities showed high values in extracts from P. ostreatus SMC, with 2.97 U/g, 1.67 U/g, and 91.56 U/g, respectively, whereas laccase activity and filter paper degradation ability were highest in extracts from P. eryngii SMC, with values of 9.01 U/g and 0.21 U/g, respectively. Enzymatic activities varied according to the SMCs released from different mushroom farms. The synthetic dyes remazol brilliant blue R and Congo red were decolorized completely by the SMC extract of P. eryngii within 120 min, and the decolorization ability of the extract was comparable to that of 0.3 U of commercial laccase. In addition, laccase activity of the SMC extract from P. eryngii was compared to that of commercial enzymes or its industrial application in decolorization.

Influences of Surfactant Tween 80 on the Gas Production, Cellulose Digestion and Enzyme Activities by Mixed Rumen Microorganisms

  • Lee, Sung S.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1151-1157
    • /
    • 2003
  • The surfactant Tween 80 was evaluated for its ability to influence cumulative gas production, cellulose digestion, and enzyme activities by mixed ruminal microorganisms grown on barley grain or Orchardgrass hay. The addition of Tween 80 at a level of 0.10% significantly (p<0.05) decreased the cumulative gas production rate from both barley grain or Orchardgrass hay substrates. However, 0.05% Tween 80 did not affect gas production rates compared to the control treatment. The addition of 0.05% Tween 80 to cultures growing on barley grain resulted in a significant increase in cellulase (90.01%), xylanase (90.73%) and amylase (487.25%) activities after 30 h incubation. Cultures utilizing Orchardgrass hay had a significant increase in cellulase (124.43%), xylanase (108.86%) and amylase (271.22%) activities after 72 h incubation. These increases in activities were also observed with cultures supplemented with 0.10% Tween 80 throughout all the incubation times tested. These results indicated that the addition of 0.05% Tween 80 could greatly stimulate the release of some of key enzymes without decreasing cell growth rate in contrast to trends reported with aerobic microorganism. Our data indicates potential uses of the surfactant Tween 80 as a feed additive for ruminant animals.

Isolation and characterization of cellulolytic bacteria, Bacillus sp. EFL1, EFL2, and EFP3 from the mixed forest (혼효림으로부터 셀룰로오스분해 박테리아 분리 및 효소학적 특성규명)

  • Park, Hwa Rang;Oh, Ki-Cheol;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • This study was conducted to isolate the cellulolytic bacteria able to grow on LB- Carboxymethyl cellulose (CMC) agar trypan blue medium from the mixed forest and Larix leptolepis stands. Three bacterial strains with high activity against both CMC and xylan were isolated. Both API kit test and 16S rRNA gene sequence analysis revealed that the three different isolates belong to the gene Bacillus. Therefore, the isolates named as Bacillus sp. EFL1, Bacillus sp. EFL2, and Bacillus sp. EFP3. The optimum growth temperature of Bacillus sp. EFL1, EFL2, and EFP3 were $37^{\circ}C$. The optimum temperature for CMCase and xylanase from Bacillus sp. EFL1 were $50^{\circ}C$. The optimum pH of Bacillus sp. EFL1 xylanase was pH 5.0 but the optimum pH of CMCase from Bacillus sp. EFL1 was pH 6.0. The optimum temperature of CMCase and xylanase from Bacillus sp. EFL2 was $60^{\circ}C$, respectively. The optimum pH of CMCase of Bacillus sp. EFL2 was 5.0, whereas xylanase showed high activity at pH 3.0-9.0. The optimum temperature for CMCase and xylanase of Bacillus sp. EFP3 was $50^{\circ}C$. The optimum pH for CMCase and xylanse was 5.0 and 4.0, respectively. CMCases from Bacillus sp. EFL1, EFL2, and EFP3 were thermally unstable. Although xylanase from Bacillus sp. EFL1 and EFP3 showed to be thermally unstable, xylanase from Bacillus sp. EFL2 showed to be thermally stable. Therefore, Bacillus sp. EFL2 has great potential for animal feed, biofuels, and food industry applications.

Plant Cell-Wall Degradation and Glycanase Activity of the Rumen Anaerobic Fungus Neocallimastix frontalis MCH3 Grown on Various Forages

  • Fujino, Y.;Ushida, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.752-757
    • /
    • 1999
  • Studies were made of digestion of timothy (Pheleum pretense) hay, tall fescue (Festuca elatior) hay, and rice (Oryza sativa) straw in pure cultures of rumen anaerobic fungus, Neocallimastix frontails MCH3. The fungus was inoculated on ground forages (1%, w/v) in an anaerobic medium and incubated at $39^{\circ}C$. Incubation was continued for 24, 48, 72 and 96 h. The losses of dry matter, xylose and glucose of forage during incubation were determined at the end of these incubation periods. Xylose and glucose were considered to be released from xylan and cellulose, respectively. The digested xylan to digested cellulose (X/C) ratios of the substrate were calculated. Xylanase and carboxymethyl cellulose (CMCase) of culture supernatant and residual substrate was measured at the same time. The X/C ratios in the cultures on timothy hay and rice straw were greater than 0.5 in the first 24-h incubation period. The values were smaller than 0.3 in tall fesque. The ratio of xylanase activity to that of CMCase in the first 24-h incubation period correlated well with the traits in X/C ratio. However xylanase activity was still superior to CMCase in the following incubation period (48 to 96 h), although the glucose (designated as cellulose) was more intensively digested than xylose (designated as xylan). The production of these polysaccharidases appeared to correlate with substrate cell-wall sugar composition, xylose to glucose ratios, at the beginning of fast growing period.

Production of Lignocellulytic Enzymes from Spent Mushroom Compost of Pleurotus eryngii (큰느타리버섯 수확 후 배지로부터 리그닌섬유소분해효소 생산)

  • Lim, Sun-Hwa;Kim, Jong-Kun;Lee, Yun-Hae;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.40 no.3
    • /
    • pp.152-158
    • /
    • 2012
  • The lignocellulytic enzymes including a-amylase (EC 3.2.1.1), lignin peroxidase (EC 1.11.1.14), laccase (EC 1.10.3.2), xylanase (EC 3.2.1.8), ${\beta}$-xylosidase (EC 3.2.1.37), ${\beta}$-glucosidase (EC 3.2.1.21) and cellulase (EC 3.2.1.4) were extracted from spent mushroom compost (SMC) of Pleurotus eryngii. Different extraction buffers and conditions were tested for optimal recovery of the enzymes. The optimum extraction was shaking incubation (200 rpm) for 2 h at $4^{\circ}C$. ${\alpha}$-Amylase was extracted with the productivity range from 1.20 to 1.6 Unit/SMC g. Cellulase was recovered with the productivity range from 2.10 to 2.80 U/gf. ${\beta}$-glucosidase and ${\beta}$-xylosidase productivities showed lowest recovery producing 0.1 U/g and 0.02 U/g, respectively. The P. eryngii SMCs collected from three different mushroom farms showed different recovery on laccase and xylanse, cellulase. Furthermore, the water extracted SMC was compared to commercial enzymes for its industrial application in decolorization and cellulase activity.

Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues

  • Suwannarangsee, Surisa;Arnthong, Jantima;Eurwilaichitr, Lily;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1427-1437
    • /
    • 2014
  • Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, ${\beta}$-glucosidase, xylanase, and ${\beta}$-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of ${\beta}$-glucosidase and core hemicellulases (xylanase and ${\beta}$-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external ${\beta}$-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.

Rice Straw-Decomposing Fungi and Their Cellulolytic and Xylanolytic Enzymes

  • Lee, Sang-Joon;Jang, Yeong-Seon;Lee, Young-Min;Lee, Jae-Jung;Lee, Han-Byul;Kim, Gyu-Hyeok;Kim, Jae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1322-1329
    • /
    • 2011
  • Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulase-producing fungi were selected in a first screening step followed by a second step to isolate the best enzyme-producer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-${\beta}$-1,4 glucanase (EG), and endo-${\beta}$-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.

Construction of Intraspecific Hybrids by Nuclear Transfer in Aspergillus nidulans (Aspergillus nidulans 에서의 핵전이에 의한 종내잡종 형성)

  • Yang, Young-Ki;Park, Yeol;Rhee, Young-Ha;Maeng, Pil-Jae
    • The Korean Journal of Mycology
    • /
    • v.17 no.3
    • /
    • pp.154-160
    • /
    • 1989
  • The nuclear transfer technique was employed to obtain intraspecific hybrids in Aspergillus nidulans. Nuclei isolated from either a wild type or an auxotrophic mutant strain (FGSC 475) were transferred into the protoplasts of a recipient strain (FGSC 514). The frequency of hybrid formation (4.8% and 10.1 %, respectively) by nuclear transfer was higher than the frequency (0.6%) by protoplast fusion. Furthermore, most of the hybrids formed showed increased activity of some components of cellulase system, xylanase system, and mannanase. The hybrids were analyzed to be either diploid or aneuploid. These results suggest that nuclear transfer technique is more efficient the formation of intraspecific hybrids than protoplast fusion method and is useful for the improvement of Aspergillus strains.

  • PDF