• Title/Summary/Keyword: cellulase and xylanase

Search Result 170, Processing Time 0.024 seconds

Changes in Physico-chemical and Microbiological Parameters during Active Composting of Cattle Manure (우분 퇴비화의 주발효과정 중 이화학적 및 미생물학적 파라미터의 변화)

  • Kim, Yoon Seok;Kang, Myoung Kyu;Bae, Kyung Sook;Lee, Kyu Seung;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.267-273
    • /
    • 1997
  • Various physico-chemical and microbiological parameters of a composting system were compared with respect to their potential use for the monitoring and evaluation of composting processes for cattle manure. The temperature changed within a range of $30-65^{\circ}C$ during the whole composting process, and the period of active composting (>$40^{\circ}C$) persisted for 16 days. The concentrations of total carbon, total nitrogen, and organic matter decreased by 15% during active composting, but significant changes in C/N ratio were not observed. The decrease of temperature in the latter period of active composting caused a decrease of $NH_4^+-N$ and an increase of $NO_3^--N$ in the composting pile. When temperature exceeded $50^{\circ}C$, the population of thermophiles was higher than that of mesophiles by more than 1 or 2 orders of magnitude. Correlation analyses showed that amylase activity correlated positively with the population of mesophiles and reducing sugar content, but negatively with the population of thermophiles. Amylase activity was higher at the beginning of active composting, whereas cellulase, xylanase and ligninase activities which showed close relationship with each other, increased continually during active cornposting, suggesting the distinction of temporal niches between amylose-degrading and lignocellulose-degrading bacteria in the same habitat.

  • PDF

Assessment of the Ability of Extracellular Enzyme Production in Hybrid Strains of Lentinula edodes by Chromogenic Reaction-based Plate Assay (발색반응 분석법을 이용한 표고 교배균주의 세포외효소 분비 능력 평가)

  • Kwon, Hyuk-Woo;Kim, Jun-Young;Ko, Han-Gyu;Park, Heung-Soo;Kim, Seong-Hwan
    • The Korean Journal of Mycology
    • /
    • v.39 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • Shiitake breeding requires the procedures of mating of two different parental strains and selection of hybrid strains that have good traits for the mushroom production. In this study, we tested the possibility of the use of chromogenic plate-based assay for extracellular enzyme production in order to assess and find good biochemical properties-possessed hybrid strains that were generated from genetic cross of the monokaryotic strains derived from two different parental strains of Lentinula edodes Sanjo-101ho and Sanjo-108ho. We observed that there was difference in the ability of producing ${\beta}$-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease among the monokaryotic strains. We could also comparatively assess that the ability of the seven extracellular enzymes production in the hybrid strains depended on the mating combination of the monokaryotic strains. Our results demonstrate that the assessment method for extracellular enzyme production using chromogenic plate assay could be usefully applied to the assessment of the hybrid strains derived from the breeding procedure of L. edodes.

Effect of Glucose Levels and N Sources in Defined Media on Fibrolytic Activity Profiles of Neocallimastix sp. YQ1 Grown on Chinese Wildrye Grass Hay or Alfalfa Hay

  • Yang, H.J.;Yue, Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.379-385
    • /
    • 2011
  • Ferulic acid esterase (FAE) and acetyl esterase (AE) cleave feruloyl groups substituted at the 5'-OH group of arabinosyl residues and acetyl groups substituted at O-2/O-3 of the xylan backbone, respectively, of arabinoxylans in the cell wall of grasses. In this study, the enzyme profiles of FAE, AE and polysaccharide hydrolases of the anaerobic rumen fungus Neocallimastix sp. YQ1 grown on Chinese wildrye grass hay (CW) or alfalfa hay (AH) were investigated by two $2{\times}4$ factorial experiments, each in 10-day pure cultures. The treatments consisted of two glucose levels ($G^+$: glucose at 1.0 g/L, $G^-$: no glucose) and four N sources (N1: 1.0 g/L yeast extract, 1.0 g/L tryptone and 0.5 g/L $(NH_4)_2SO_4$; N2: 2.8 g/L yeast extract and 0.5 g/L $(NH_4)_2SO_4$; N3: 1.6 g/L tryptone and 0.5 g/L $(NH_4)_2SO_4$; N4: 1.4 g/L tryptone and 1.7 g/L yeast extract) in defined media. The optimal combinations of glucose level and N source for the fungus on CW, instead of AH, were $G^-N4$ and $G^-N3$ for maximum production of FAE and AE, respectively. Xylanase activity peaked on day 4 and day 6 for the fungus grown on CW and AH, respectively. The activities of esterases were positively correlated with those of xylanase and carboxymethyl cellulase. The fungus grown on CW exhibited a greater volatile fatty acid production than on AH with a greater release of ferulic acid from plant cell wall.

Isolation and Characteristics of Composting-promoting-bacteria (부숙촉진 미생물 분리 및 분리균의 특성)

  • Lee, Young-Han;Park, Sang-Ryeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.6
    • /
    • pp.394-400
    • /
    • 2001
  • This experiment was conducted to determine the safety and feasibility of using compost-promoting-bacteria. Compost-promoting-bacteria was isolated from livestock compost containing sawdust. The isolated bacteria was identified as Bacillus subtilis LYH201 by the method of the composition of the fatty acid with MIDI system and Bergey's manual. This Bacillus subtilis LYH201 had the following characteristics : Gram-positive, straight rod ($0.5{\sim}0.7{\mu}m$ width, $2.5{\sim}3.0{\mu}m$ length), facultatively aerobic and product of xylanase, CMCase, catalase, oxidase, protease and $0.5{\sim}0.7{\mu}m$-amylase. Growth of Bacillus subtilis LYH201 at saccharose as carbon source(0.5%) was faster than other carbon source. Activity of cellulase. $0.5{\sim}0.7{\mu}m$-amylase and protease from Bacillus subtilis LYH201 after 24 hours at $50^{\circ}C$ by agar diffusion method was higher than that of low temperature. Optimum growth condition of Bacillus subtilis LYH201 was $50^{\circ}C$ and pH 6.

  • PDF

Identification and Characterization of an Anaerobic Ethanol-Producing Cellulolytic Bacterial Consortium from Great Basin Hot Springs with Agricultural Residues and Energy Crops

  • Zhao, Chao;Deng, Yunjin;Wang, Xingna;Li, Qiuzhe;Huang, Yifan;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1280-1290
    • /
    • 2014
  • In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA library-based analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

Yeast Associated with the Ambrosia Beetle, Platypus koryoensis, the Pest of Oak Trees in Korea

  • Yun, Yeo Hong;Suh, Dong Yeon;Yoo, Hun Dal;Oh, Man Hwan;Kim, Seong Hwan
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.458-466
    • /
    • 2015
  • Oak tree death caused by symbiosis of an ambrosia beetle, Platypus koryoensis, and an ophiostomatoid filamentous fungus, Raffaelea quercus-mongolicae, has been a nationwide problem in Korea since 2004. In this study, we surveyed the yeast species associated with P. koryoensis to better understand the diversity of fungal associates of the beetle pest. In 2009, a total of 195 yeast isolates were sampled from larvae and adult beetles (female and male) of P. koryoensis in Cheonan, Goyang, and Paju; 8 species were identified by based on their morphological, biochemical and molecular analyses. Meyerozyma guilliermondii and Candida kashinagacola were found to be the two dominant species. Among the 8 species, Candida homilentoma was a newly recorded yeast species in Korea, and thus, its mycological characteristics were described. The P. koryoensis symbiont R. quercusmongolicae did not show extracelluar CM-cellulase, xylanase and avicelase activity that are responsible for degradation of wood structure; however, C. kashinagacola and M. guilliermondii did show the three extracellular enzymatic activities. Extracelluar CM-cellulase activity was also found in Ambrosiozyma sp., C. homilentoma, C. kashinagacola, and Candida sp. Extracelluar pectinase activity was detected in Ambrosiozyma sp., C. homilentoma, Candida sp., and M. guilliermondii. All the 8 yeast species displayed compatible relationships with R. quercus-mongolicae when they were co-cultivated on yeast extract-malt extract plates. Overall, our results demonstrated that P. koryoensis carries the yeast species as a symbiotic fungal associate. This is first report of yeast diversity associated with P. koryoensis.

Analysis of Functional Genes in Carbohydrate Metabolic Pathway of Anaerobic Rumen Fungus Neocallimastix frontalis PMA02

  • Kwon, Mi;Song, Jaeyong;Ha, Jong K.;Park, Hong-Seog;Chang, Jongsoo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1555-1565
    • /
    • 2009
  • Anaerobic rumen fungi have been regarded as good genetic resources for enzyme production which might be useful for feed supplements, bio-energy production, bio-remediation and other industrial purposes. In this study, an expressed sequence tag (EST) library of the rumen anaerobic fungus Neocallimastix frontalis was constructed and functional genes from the EST library were analyzed to elucidate carbohydrate metabolism of anaerobic fungi. From 10,080 acquired clones, 9,569 clones with average size of 628 bp were selected for analysis. After the assembling process, 1,410 contigs were assembled and 1,369 sequences remained as singletons. 1,192 sequences were matched with proteins in the public data base with known function and 693 of them were matched with proteins isolated from fungi. One hundred and fifty four sequences were classified as genes related with biological process and 328 sequences were classified as genes related with cellular components. Most of the enzymes in the pathway of glucose metabolism were successfully isolated via construction of 10,080 ESTs. Four kinds of hemi-cellulase were isolated such as mannanase, xylose isomerase, xylan esterase, and xylanase. Five $\beta$-glucosidases with at least three different conserved domain structures were isolated. Ten cellulases with at least five different conserved domain structures were isolated. This is the first solid data supporting the expression of a multiple enzyme system in the fungus N. frontalis for polysaccharide hydrolysis.

Isolation and Analysis of the Enzymatic Properties of Thermophilic Fungi from Compost

  • Lee, Hanbyul;Lee, Young Min;Jang, Yeongseon;Lee, Sangjoon;Lee, Hwanhwi;Ahn, Byoung Jun;Kim, Gyu-Hyeok;Kim, Jae-Jin
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.181-184
    • /
    • 2014
  • To the best of our knowledge, this is the first report on thermophilic fungi isolated in Korea. Three species of thermophiles were isolated from compost and were identified as Myriococcum thermophilum, Thermoascus aurantiacus, and Thermomyces lanuginosus. They can grow at temperatures above $50^{\circ}C$ and produce high levels of cellulolytic and xylanolytic enzymes at high temperatures. Notably, the considerable thermostability of the endo-glucanase produced by T. aurantiacus has made the fungus an attractive source of industrial enzymes.

Effects of Daily and Interval Feeding of Sapindus rarak Saponins on Protozoa, Rumen Fermentation Parameters and Digestibility in Sheep

  • Wina, Elizabeth;Muetzel, Stefan;Becker, Klaus
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1580-1587
    • /
    • 2006
  • Several researchers have demonstrated that the rumen microbial community rapidly adapts to saponins and proposed interval feeding to prevent this rapid adaptation. An in vivo experiment was carried out to examine the effect of daily versus application every third day (interval feeding) of Sapindus rarak saponins (SE) on rumen fermentation end products, protozoal counts and nutrient digestibility. Thirty sheep were allocated into 5 groups. Sheep were fed daily or every third day with two levels of SE (0.48 and 0.72 g/kg body mass). One group received no saponin and served as control. All sheep received the same diet, a mixture of elephant grass and wheat pollard (65:35 w/w). Independent of the feeding regime and the level of inclusion, the addition of SE decreased protozoal counts and rumen ammonia concentrations (p<0.01). Microbial N supply and N retention were not affected by the high feeding regime. Daily feeding negatively influenced rumen xylanase and cellulase activity, but only when the high level of saponins was fed. However, these negative effects on rumen cell wall degradation were not reflected in decreasing total tract digestibility of the organic matter or the plant cell walls. Our results show that rumen microorganisms do not rapidly adapt to S. rarak saponins.

Fibrobacter succinogenes, a Dominant Fibrolytic Ruminal Bacterium: Transition to the Post Genomic Era

  • Jun, H.S.;Qi, M.;Ha, J.K.;Forsberg, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.802-810
    • /
    • 2007
  • Fibrobacter succinogenes, a Gram-negative, anaerobic ruminal bacterium is a major fibre digesting species in the rumen. It intensively degrades plant cell walls by an erosion type of mechanism, burrowing its way through the complex matrix of cellulose and hemicellulose with the release of digestible and undigested cell wall fragments. The enzymes involved in this process include a combination of glucanases, xylanases, arabinofuranosidase(s) and esterases. The genome of the bacterium has been sequenced and this has revealed in excess of 100 putative glycosyl hydrolase, pectate lyase and carbohydrate esterase genes, which is greater than the numbers reported present in other major cellulolytic organisms for which genomes have been sequenced. Modelling of the amino acid sequences of two glycanases, CedA and EGB, by reference to crystallized homologs has enabled prediction of the major features of their tertiary structures. Two dimensional gel electrophoresis in conjunction with mass spectroscopy has permitted the documentation of proteins over expressed in F. succinogenes grown on cellulose, and analysis of the cell surfaces of mutant strains unable to bind to cellulose has enabled the identification of candidate proteins with roles in adhesion to the plant cell wall substrate, the precursor to cellulose biodegradation.