Browse > Article
http://dx.doi.org/10.4014/jmb.1401.01022

Identification and Characterization of an Anaerobic Ethanol-Producing Cellulolytic Bacterial Consortium from Great Basin Hot Springs with Agricultural Residues and Energy Crops  

Zhao, Chao (College of Food Science, Fujian Agriculture and Forestry University)
Deng, Yunjin (College of Food Science, Fujian Agriculture and Forestry University)
Wang, Xingna (Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences)
Li, Qiuzhe (College of Food Science, Fujian Agriculture and Forestry University)
Huang, Yifan (College of Food Science, Fujian Agriculture and Forestry University)
Liu, Bin (College of Food Science, Fujian Agriculture and Forestry University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.9, 2014 , pp. 1280-1290 More about this Journal
Abstract
In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA library-based analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.
Keywords
Microbial consortium; cellulolytic bacterium; hot springs; cellulase; ethanol;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sizova MV, Izquierdo JA, Panikov NS, Lynd LR. 2011. Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl. Environ. Microbiol. 77: 2282-2291.   DOI   ScienceOn
2 Syutsubo K, Nagaya Y, Sakai S, Miya A. 2005. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process. Water Sci. Technol. 52: 79-84.
3 Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
4 Tsuey LS, Ariff AB, Mohamad R, Rahim RA. 2006. Improvements of GC and HPLC analyses in solvent (acetonebutanol- ethanol) fermentation by Clostridium saccharobutylicum using a mixture of starch and glycerol as carbon source. Biotechnol. Bioproc. E 11: 293-298.   DOI
5 Warnick TA, Methe BA, Leschine SB. 2002. Clostridium phytofermentans sp. nov. a cellulolytic mesophile from forest soil. Int. J. Syst. Evol. Microbiol. 52: 1155-1160.   DOI   ScienceOn
6 Watanabe K, Teramoto M, Futamata H, Harayama S. 1998. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol. 64: 4396-4402.
7 Koskinen PEP, Lay CH, Beck SR, Tolvanen KE, Koksonen AH, Orlygsson J, et al. 2008. Bioprospecting thermophilic microorganisms from Icelandic hot springs for hydrogen and ethanol production. Energy Fuels 22: 134-140.   DOI   ScienceOn
8 Lawson PA, Song Y, Liu C, Molitoris DR, Vaisanen ML, Collins MD, Finegold SM. 2004. Anaerotruncus colihominis gen. nov., sp. nov., from human faeces. Int. J. Syst. Evol. Microbiol. 54: 413-417.   DOI   ScienceOn
9 Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. 2006. Environmental, economic and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 103: 11206-11210.   DOI   ScienceOn
10 Cai S, Li J, Hu FZ, Zhang K, Luo Y, Janto B, et al. 2010. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrateborne fibrolytic enzymes. Appl. Environ. Microbiol. 76: 3818- 3824.   DOI   ScienceOn
11 Chen SY, Dong XZ. 2004. Acetanaerobacterium elongatum gen. nov., sp. nov., from paper mill waste water. Int. J. Syst. Evol. Microbiol. 54: 2257-2262.   DOI   ScienceOn
12 Camassola M, Dillon AJP. 2009. Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind. Crops Prod. 29: 642-647.   DOI   ScienceOn
13 Cardona CA, Quintero JA, Paz IC. 2010. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101: 4754-4766.   DOI   ScienceOn
14 Liu CC, X iao L, J iang JX, Wang WX, Gu F, S ong DL, et al. 2013. Biomass properties from different Miscanthus species. Food Energy Security DOI: 10.1002/fes3.19.   DOI
15 Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energ. Combust. Sci. 38: 449-467.   DOI   ScienceOn
16 McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ. 2007. Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary. UK Environ. Microbiol. 9: 165-176.   DOI   ScienceOn
17 Liu B, Zhang N, Zhao C, Lin BX, Xie LH, Huang YF. 2012. Characterization of a recombinant thermostable xylanase from hot spring thermophilic Geobacillus sp. TC-W7. J. Microbiol. Biotechnol. 22: 1391-1397.
18 Maki M, Leung KT, Qin W. 2009. The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5: 500-516.
19 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
20 Peacock JP, Cole JK, Murugapiran SK, Dodsworth JA, Fisher JC, Moser DP, Hedlund BP. 2013. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment. PLoS One 8: e59927.   DOI
21 Rani KS, Swamy MV, Seenayya G. 1997. Increased ethanol production by metabolic modulation of cellulose fermentation in Clostridium thermocellum. Biotechnol. Lett. 19: 819-823.   DOI   ScienceOn
22 Balan V, da Costa Sousa L, Chundawat SP, Vismeh R, Jones AD, Dale BE. 2008. Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. J. Ind. Microbiol. Biotechnol. 35: 293-301.   DOI   ScienceOn
23 Wolin EA, Wolin MJ, Wolfe RS. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882-2886.
24 Chaudhary N, Qazi JI. 2011. Lignocellulose for ethanol production: a review of issues relating to bagasse as a source material. Afr. J. Biotechnol. 10: 1270-1274.
25 Chen Y, Sharma-Shivappa RR, Keshwani D, Chen C. 2007. Potential of agricultural residues and hay for bioethanol production. Appl. Biochem. Biotechnol. 142: 276-290.   DOI   ScienceOn
26 Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.   DOI
27 Wiegel J, Ljungdahl LG. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch. Microbiol. 128: 343-348.   DOI
28 Yoon MH, Ten LN, Im WT, Lee ST. 2008. Cellulomonas chitinilytica sp. nov. a chitinolytic bacterium isolated from cattle-farm compost. Int. J. Syst. Evol. Microbiol. 58: 1878-1884.   DOI   ScienceOn
29 Balat M, Balat H, Oz C. 2008. Progress in bioethanol processing. Prog. Energ. Combust. Sci. 34: 551-573.   DOI   ScienceOn
30 Balat M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manage. 52: 858-875.   DOI   ScienceOn
31 Balk M, Mehboob F, van Gelder AH, Rijpstra WI, Damste JS, Stams AJ. 2010. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage. Appl. Microbiol. Biotechnol. 88: 595-603.   DOI   ScienceOn
32 Kato S, Haruta S, Cui ZJ. 2004. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int. J. Syst. Evol. Microbiol. 54: 2043-2047.   DOI   ScienceOn
33 Betian HG, Linehan BA, Bryant MP, Holdeman LV. 1977. Isolation of a cellulolytic Bacteroides sp. from human feces. Appl. Environ. Microbiol. 33: 1009-1010.
34 Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19: 210-217.   DOI   ScienceOn
35 Hungate RE. 1969. A roll tube method for cultivation of strict anaerobes. Methods Microbiol. 3B: 117-132.
36 Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721.   DOI   ScienceOn
37 Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI   ScienceOn
38 Zhang K, Dong X. 2009. Selenomonas bovis sp. nov., isolated from yak rumen contents. Int. J. Syst. Evol. Microbiol. 59: 2080-2083.   DOI   ScienceOn
39 Wongwatanapaiboon J, Kangvansaichol K, Burapatana V, Inochanon R, Winayanuwattikun P, Yongvanich T, Chulalaksananukul W. 2012. The potential of cellulosic ethanol production from grasses in Thailand. J. Biomed. Biotechnol. 303748.
40 Xi Q, Jezowski S. 2004. Plant resources of Triarrhena and Miscanthus species in China and its meaning for Europe. Plant Breed. Seed Sci. 49: 63-77.
41 Zhao C, Ruan LW. 2011. Biodegradation of Enteromorpha prolifera by mangrove degrading micro-consortium with physical-chemical pretreatment. Appl. Microbiol. Biotechnol. 92: 709-916.   DOI
42 Zhao Y, Wang Y, Zhu JY, Ragauskas A, Deang Y. 2008. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol. Bioeng. 99: 1320-1328.   DOI   ScienceOn
43 Sarkar N, Ghosh SK, Bannerjee S, Aikat K. 2012. Bioethanol production from agricultural wastes: an overview. Renew. Energ. 37: 19-27.   DOI   ScienceOn
44 Sigurbjornsdottir M-A, Orlygsson J. 2012. Combined hydrogen and ethanol production from sugars and lignocellulosic biomass by Thermoanaerobacterium AK54, isolated from hot spring. Appl. Energ. 97: 785-791.   DOI   ScienceOn
45 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
46 French CE. 2009. Synthetic biology and biomass conversion: a match made in heaven. J. R. Soc. Interface 64: 547-558.
47 Chung JH, Kim DS. 2012. Miscanthus as a potential bioenergy crop in East Asia. J. Crop Sci. Biotechnol. 15: 65-77.   과학기술학회마을   DOI
48 Dale BE, Allen MS, Laser M, Lynd LR. 2009. Protein feeds coproduction in biomass conversion to fuels and chemicals. Biofuel. Bioprod. Bioref. 3: 219-230.   DOI
49 Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, et al. 2012. Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 13: 210.   DOI
50 Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, et al. 2011. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour. Technol. 102: 2702- 2711.   DOI   ScienceOn
51 Hernandez PE, Ordonez JA, Sanz B. 1985. Utilization of cellobiose and D-glucose by Clostridium thermocellum ATCC- 27405. Rev. Esp. Fisiol. 41: 195-199.
52 Geng A, Zou G, Yan X, Wang Q, Zhang J, Liu F, et al. 2012. Expression and characterization of a novel metagenomederived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei. Appl. Microbiol. Biotechnol. 96: 951-962.   DOI   ScienceOn
53 Ge X, Burner DM, Xu J, P hillips GC, S ivakumar G. 2011. Bioethanol production from dedicated energy crops and residues in Arkansas. USA Biotechnol. J. 6: 66-73.   DOI   ScienceOn
54 Ghose TK. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268.   DOI
55 Alizadeh H, Teymouri F, Gilbert T, Dale B. 2005. Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol. 124: 1133-1141.   DOI   ScienceOn
56 Wilson K. 1990. Preparation of genomic DNA from bacteria, pp. 241-245. In Ausubel FM, Brent R (eds.). Current Protocols in Molecular Biology. Greene Publ. Assoc. and Wiley Interscience; New York.
57 Rincon MT, Dassa B, Flint HJ, Travis AR, Jindou S, Borovok I, et al. 2010. Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD1. PLoS One 5: e12476.   DOI