• 제목/요약/키워드: cellular-protective effect

검색결과 340건 처리시간 0.027초

Anticancer Activity of Acacia nilotica (L.) Wild. Ex. Delile Subsp. indica Against Dalton's Ascitic Lymphoma Induced Solid and Ascitic Tumor Model

  • Sakthive, K.M.;Kannan, N.;Angeline, A.;Guruvayoorappan, C.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3989-3995
    • /
    • 2012
  • The aim of the present investigation was to evaluate the effect of A.nilotica extract against Dalton's ascitic lymphoma (DAL) induced solid and ascitic tumors in BALB/c mice. Experimental animals received A.nilotica extract (10 mg/kg.bw) intraperitoneally for 10 and 14 consecutive days before induction of solid and ascitic tumors, respectively. Treatment with A.nilotica extract significantly decreased the development of tumor and percentage increase in body weight when compared to DAL induced solid tumor control group, also increasing the life span, restoring the total white blood cell count and hemoglobin content and significantly decreasing the levels of serum aspartate transaminase (SGPT), alanine transaminase (SGOT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) and nitric oxide (NO) when compared to DAL induced ascitic tumor controls. The treatment also reduced significantly the cellular glutathione (GSH) and nitric oxide levels in treated animals. Histopathological studies also confirmed protective influence. The outcome of the present work indicates that A.nilotica extract could be used as natural anticancer agent for human health.

Grapefruit Juice Suppresses Azoxymethane-induced Colon Aberrant Crypt Formation and Induces Antioxidant Capacity in Mice

  • Madrigal-Bujaidar, Eduardo;Roaro, Laura Martino;Garcia-Aguirre, Karol;Garcia-Medina, Sandra;Alvarez-Gonzalez, Isela
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6851-6856
    • /
    • 2013
  • In the present report we determined the protective capacity of grapefruit juice (GJ) against molecular and cellular damage in azoxymethane (AOM) treated mice. Animals were daily administered GJ orally (0.8, 4.1, and 8.2 ${\mu}l/g$) for seven weeks, as well as intraperitoneally (ip) injected with AOM twice (weeks 2 and 3 of the assay). Control groups administered with water, with the high dose of GJ, and with AOM injected in weeks 2 and 3 were also included. The results showed a significant, dose-dependent protection of GJ on the number of colon aberrant crypts (AC) induced by AOM. The highest inhibitory effect was reached with the highest tested dose of GJ, decreasing ACF by 51% and 43% at weeks 4 and 7 of the assay. Regarding protein and lipid oxidation we also found a dose-dependent decrease caused with GJ in comparison with the increased levels produced by AOM. Therefore, our results established chemopreventive potential for GJ, and suggested effects related to its antioxidant capacity. Finally, we found that the tested agents induced neither micronuclei increase nor alteration in bone marrow cytotoxicity.

신장(腎臟) 조직(組織)에서 제조의 항산화(抗酸化) 효과(效果)의 기전(機轉) 연구(硏究) (Underlying mechanism of antioxidant action of Holotrichia in renal tissues)

  • 정지천;문상원;김길섭
    • 대한한방내과학회지
    • /
    • 제19권1호
    • /
    • pp.442-451
    • /
    • 1998
  • This study was carried out to examine mechanisms by which Holotrichia (HTC) produces protective effect against renal cell injury. HTC extraction (5%) prevented $H_2O_2(50mM)$-induced LDH release and lipid peroxidation in renal cortical slices. When slices were treated with 5% HTC extraction, cellular glutathione content and the superoxide dismutase activity were not altered in control and $H_2O_2$-treated tissues. When slices were treated with 50 mM $H_2O_2$, the catalase activity was significantly inhibited, which was completely restored by addition of 5% HTC. Treatment of slices with 5% HTC extraction increased the glutation peroxidase activity in $H_2O_2$-treated tissues. These results suggest that HTC prevents oxidant-induced cell injury and lipid peroxidation by increasing the activities of catalase and glutathione peroxidase in renal cortical slices.

  • PDF

청아환의 Peroxynitrite 제거 활성 및 기전 (Peroxynitrite Scavenging Activity and its Mechanism of Cheonga-hwan)

  • 김성호;정지천
    • 대한한의학회지
    • /
    • 제23권4호
    • /
    • pp.55-63
    • /
    • 2002
  • Objectives: Peroxynitrite ($ONOO^{-}$), formed from the reaction of superoxide <${\cdot}O_2^{-}$) and nitric oxide (NO), is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been implicated in diseases such as aging process, Alzheimer's disease, rheumatoid arthritis, cancer and arteriosclerosis. Due to the lack of endogenous enzymes responsible for $ONOO^{-}$ inactivation, developing a specific $ONOO^{-}$ scavenger is of considerable importance. The aim of this study was to evaluate $ONOO^{-}$ scavenging activity and its mechanism in Cheonga-hwan (CAH). Methods: The $ONOO^{-}$ scavenging activity in CAH was assayed by measuring oxidized dihydrorhodamine 123 (DHR 123) by fluorescence. The scavenging efficacy was expressed as $IC_{50}$, showing the concentration of each sample required to cause 50% inhibition of DHR 123 oxidation. In a separate study, the protective effect of CAR on $ONOO^{-}$-induced nitration of bovine serum albumin (BSA) was investigated using immunoassay with a monoclonal anti-nitrotyrosine antibody, and a horseradish peroxidase-conjugated anti-mouse secondary antibody from sheep. Results: CAH showed potent scavenging activities of $ONOO^{-}$, NO and ${\cdot}O_2^{-}$. The data demonstrated that CAH led to decreased $ONOO^{-}$-mediated nitration of tyrosine through electron donation. CAH showed significant inhibition on nitration of bovine serum albumin by $ONOO^{-}$ in a dose-dependent manner. Conclusions: CAH can be developed as an effective peroxynitrite scavenger for the prevention of the $ONOO^{-}$ involved diseases.

  • PDF

Ballistic impact analyses of triangular corrugated plates filled with foam core

  • Panigrahi, S.K.;Das, Kallola
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.139-154
    • /
    • 2016
  • The usage of sandwich structure is extensively increasing in lightweight protective structures due to its low density and other useful properties. Sandwich panels made of metal sheets with unfilled cellular cores are found to exhibit lower deflections by comparing to an equivalent monolithic plate of same metal and similar mass per unit density. However, the process of localized impact on solid structures involving plastic deformation, high strain rates, temperature effect, material erosion, etc. does not hold effectively as that of monolithic plate. In present work, the applications of the sandwich plate with corrugated core have been extended to develop optimized lightweight armour using foam as medium of its core by explicit finite element analysis (FEA). The mechanisms of hardened steel projectile penetration of aluminum corrugated sandwich panels filled with foams have been numerically investigated by finite element analysis (FEA). A comparative study is done for the triangular corrugated sandwich plate filled with polymeric foam and metallic foam with different densities in order to achieve the optimum penetration resistance to ballistic impact. Corrugated sandwich plates filled with metallic foams are found to be superior when compared to the polymeric one. The optimized results are then compared with that of equivalent solid and unfilled cores structure to observe the effectiveness of foam-filled corrugated sandwich plate which provides an effective resistance to ballistic response. The novel structure can be the alternative to solid aluminum plate in the applications of light weight protection system.

Whitening and Anti-oxidative Activities of Chemical Components Extracted from Branches of Sorbus alnifolia

  • Bo Shi Liu;Jung Eun Kim;Nam Ho Lee
    • 대한화학회지
    • /
    • 제67권2호
    • /
    • pp.137-144
    • /
    • 2023
  • In this study were evaluated the whitening and anti-oxidative activities from the extracts of Sorbus alnifolia branches, and identified the chemical structures of the active ingredients. In the whitening tests using α-MSH stimulated B16F10 melanoma cells, the 70% ethanol extract and n-butanol (n-BuOH) fractions concentration-dependently inhibited cellular melanogenesis and intracellular tyrosinase activities without causing cell toxicity. The total polyphenol content of n-BuOH and ethyl acetate (EtOAc) fractions were measured to be respectively 241.1 ± 1.1 and 222.9 ± 2.4 (mg/g GAE), and the total flavonoid content of EtOAc fraction was 75.3 ± 2.0 (mg/g QE). Upon anti-oxidant studies with DPPH and ABTS+ radicals, potent radical scavenging activities were observed in the EtOAc and n-BuOH fractions. Moreover, in the study of cell protection efficacy using HaCaT keratinocytes damaged by H2O2, the EtOAc and n-BuOH fractions showed a very positive results on prevention of oxidative stress. Phytochemical studies for this extract resulted in the isolation of four compounds; 2-oxopomolic acid (1), euscaphic acid (2), epi-catechin (3), prunasin (4). These results suggested that the extract of S. alnifolia branches containing compounds 1-4 as natural ingredients could be used as whitening and anti-oxidant ingredients in cosmetic formulations.

Alaria esculenta Extract Protects against Oxidative Damage by Inducing Heme Oxygenase-1 Expression via Akt and Nrf2

  • Choi, Chun-Yeon;Jo, Guk-Heui;Lee, Jung-Im;Seo, Young-Wan;Han, Tae-Jun;Choi, Il-Whan;Liu, Kwang-Hyeon;Oh, Sang-Taek;Kim, Dong-Eun;Jang, Won-Hee;Seog, Dae-Hyun;Park, Yeong-Hong;Yea, Sung-Su
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.120-125
    • /
    • 2009
  • Alaria esculenta is a brown seaweed found in the Arctic. This study investigated the protective effect of A. esculenta extract (AEE) against oxidant-mediated injury and its mode of action in RAW264.7 macrophages. The methyl thiazolyl tetrazolium (MTT) assay showed that $H_2O_2$ treatment reduced cell viability, whereas AEE protected cells from $H_2O_2$-mediated cytotoxicity in a dose-dependent manner. Because heme oxygenase-1 (HO-1) is known to protect cells against oxidative damage, we investigated the effect of AEE on HO-1 gene expression and HO enzyme activity. The protective effect of AEE against $H_2O_2$-induced injury was correlated with increased HO enzyme activity. AEE also induced HO-1 mRNA and protein expression, as determined RT-PCR and Western blotting, respectively. To characterize the mechanisms by which AEE induces HO-1 gene expression, we examined the effect of AEE on the nuclear translocation of NF-E2-related factor-2 (Nrf2) and Akt phosphorylation. AEE treatment activated upstream signaling for HO-1 gene expression, including the nuclear translocation of Nrf2 and Akt phosphorylation. Collectively, these results suggest that AEE has anti-oxidant activity that is mediated, at least in part, via the activation of Nrf2 and Akt and the subsequent induction of HO-1 gene expression.

배무채 에탄올층의 D-galactosamine 간손상에 대한 보호효과 (Hepatoprotective Effect of Ethanol Extract of xBrassicaraphanus on Liver Injury in Rats Treated by D-galactosamine)

  • 이연희;이은옥;이효정;심범상;안규석;최종원;이수성;윤병수;김성훈
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1388-1393
    • /
    • 2007
  • The protective effect of xBrassicoraphanus (BR) on liver inhury was evaluated in the rats with liver injury induced by i.p. injection of D-galactosamine (GalN) following 2 week oral treatment of ethanol extract of xBrassicoraphanus (EBR). EBR (200 mg/kg) significantly suppressed the levels of ALT, AST, SDH, ${\gamma}-GT$, ALP, LDH and lipid peroxidation compared with GalN treated control, while EBR at 100 mg/kg significantly suppressed AST and ${\gamma}-GT$. Similarly, EBR at 200 mg/kg significantly attenuated the levels of Phase I enzymes such as XO, AO, AH and AD as well as significantly increased the levels of Phase II enzymes such as SOD, catalase and GSH-Px in the GalN treated rats. Taken together, these results indicate that the ethanol extract of xBrassicoraphanus may have a hepatoprotective effect against GalN induced liver injury, suggesting the ethanol extract of xBrassicoraphanus can be applied as hepatoprotective functional food. However, its mechanism should be further studied in molecular and cellular view points.

황금의 간세포 보호활성 및 cytochrome P450 발현 조절에 관한 연구 (Study on the Hepatoprotective Effect and Cytochrome P450 Regulation of Scutellaria Radix)

  • 하기태;정상신;김철호;최달영;김준기
    • 동의생리병리학회지
    • /
    • 제22권1호
    • /
    • pp.155-161
    • /
    • 2008
  • Carbon tetrachloride $(CCl_4)-induced$ liver injury depends on a toxic agent that has to be metabolized by the liver NAPDH-cytochrome P450 enzyme system to a highly reactive intermediate. Although several isoforms of cytochrome P450 may metabolize $CC1_4$, attention has been focused largely on the cytochrome P450 2E1 (CYP2E1), which is ethanol-inducible. Alternations in the activity of CYP2E1 affect the susceptibility to hepatic injury from $CC1_4$. In this study, the liver protective effect of the hot water extracts of Scutellaria radix (SR) was investigated. The SR exhibited a hepatoprotective activity against $CCl_4-induced$ liver damage in Chang liver cells. The expression of CYP2E1, measured by RT-PCR and Western blot analysis, was significantly decreased by SR treatment in Chang cells. Based on these findings, it is suggested that hepatoprotective effect of SR possibly related to downregulation of CYP2E1 expression.

쪽의 항산화 및 항염증 활성에 대한 연구 (Study on Antioxidant and Anti-inflammatory Activities of Persicaria tinctoria)

  • 김수정;장태원;김도완;박재호
    • 대한본초학회지
    • /
    • 제30권6호
    • /
    • pp.17-24
    • /
    • 2015
  • Objectives : Persicaria tinctoria belongs to the Polygonaceae family and it has been used as the natural dye traditionally. Also, it is well known that the Persicaria tinctoria is used for treating the following symptoms such as fever, inflammation and edema. The purpose of this study is to investigate the effective source of antioxidants and anti-inflammatory agent from various parts of Persicaria tinctoria.Methods : We investigated the antioxidative and anti-inflammatory properties of the Persicaria tinctoria extracts. Antioxidant activities were measured by 1,1-diphenyl-2- picrylhydrazyl (DPPH), 2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity, Fe2+ chelating activity and Reducing power of Persicaria tinctoria extracts. And its inhibitory effect against oxidative DNA damage was evaluated in non-cellular system using φX-174 RF I plasmin DNA. The anti-inflammatory effect of Persicaria tinctoria was measured by using the inhibitory efficacy for the amount of nitric-oxide (NO) produced in LPS induced RAW264.7 cells.Results : The extracts from stem part showed better DPPH scavenging activity compared to those of the leaf and root extracts. Their IC50s were measured as 7.17, 144.40 and 165.07 ug/ml, respectively. These results were similar to that of ABTS radical scavenging assay and reducing power. Also, Persicaria tinctoria showed the protective effects of DNA damage against oxidative stress and anti-inflammatory effect by suppression of NO production in LPS induced RAW264.7 cells.Conclusions : These results showed that various parts of Persicaria tinctoria can be used as an effective source of antioxidants and anti-inflammatory agents via antioxidative activities and anti-inflammatory effect.