• Title/Summary/Keyword: cellular structures

Search Result 345, Processing Time 0.028 seconds

Ultrastructural and Immunohistochemical Study of Hepatic Fibrosis after the Ligation of the Common Bile Duct in Rats (백서의 총담관 결찰에 의한 간 섬유화의 초미세구조적 및 면역조직화학적 연구)

  • Moon, Kyung-Rye;Rho, Young-Ill;Seo, Woo-Chul;Park, Yeong-Bong;Kim, Man-Woo;Seo, Jae-Hong;Park, Sang-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.2 no.2
    • /
    • pp.185-193
    • /
    • 1999
  • Purpose: Proliferation of bile duct-like structures and fibrosis is a hepatic cellular reaction observed in most forms of human liver disease and in a variety of experimental conditions associated with liver injury. The aim of this study was to investigate the activation of Ito cells and bile duct proliferation in the rat after common bile duct ligation (CBDL). Methods: Hepatic morphological abnormalities were examined in rats whose bile ducts had been irreversibly ligated for 15, 21, 24 and 28 days. The liver was examined by immunohistochemical staining for ${\alpha}$-smooth muscle actin, the known marker of activated Ito cells, and light and electron microscopes. Results: After CBDL, the bile canalicular proliferation and interstitial fibrosis were gradually increased in the periportal areas extended to hepatic sinusoids. Ito cells positive for ${\alpha}$-smooth muscle actin were frequently observed in the periductular space and in perisinusoidal space of Disse. Ito cells and myofibroblasts were gradually increased in the interstitial fibrosis until the 28th day after CBDL. Ito cells and myofibroblasts had microfilaments with dense body at the periphery of the cell. Conclusions: Our results suggest that Ito cells may be fibroblastic or myogenic. It has also been postulated that during the development of hepatic fibrosis, Ito cells become myofibroblasts or fibroblast like cells.

  • PDF

Spinocerebellar ataxia 7 (SCA7) (척수소뇌성 운동실조증 제7형)

  • Seon-Yong, Jeong;Seok-Hun, Jang;Hyon-J., Kim
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.22-37
    • /
    • 2007
  • The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases, clinically and genetically heterogeneous, characterized by degeneration of spinocerebellar pathways with variable involvement of other neural systems. At present, 27 distinct genetic forms of SCAs are known: SCA1-8, SCA10-21, SCA23, SCA25-28, DRPLA (dentatorubral-pallidoluysian atrophy), and 16q-liked ADCA (autosomal dominant cerebellar ataxia). Epidemiological data about the prevalence of SCAs are restricted to a few studies of isolated geographical regions, and most do not reflect the real occurrence of the disease. In general a prevalence of about 0.3-2 cases per 100,000 people is assumed. As SCA are highly heterogeneous, the prevalence of specific subtypes varies between different ethnic and continental populations. Most recent data suggest that SCA3 is the commonest subtype worldwide; SCA1, SCA2, SCA6, SCA7, and SCA8 have a prevalence of over 2%, and the remaining SCAs are thought to be rare (prevalence <1%). In this review, we highlight and discuss the SCA7. The hallmark of SCA7 is the association of hereditary ataxia and visual loss caused by pigmentary macular degeneration. Visual failure is progressive, bilateral and symmetrical, and leads irreversibly to blindness. This association represents a distinct disease entity classified as autosomal dominant cerebellar ataxia (ADCA) type II by Harding. The disease affectsprimarily the cerebellum and the retina by the moderate to severe neuronal loss and gliosis, but also many other central nervous system structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat in the ATXN7 gene encoding a polyglutamine (polyQ) tract in the corresponding protein, ataxin-7. Normal ATXN7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36->450 CAG repeats. Immunoblott analysis demonstrated that ataxin-7 is widely expressed but that expression levels vary among tissues. Instability of expanded repeats is more pronounced in SCA7 than in other SCA subtypes and can cause substantial lowering of age at onset in successive generations termed ‘anticipation’ so that children may become diseased even before their parents develop symptoms. The strong anticipation in SCA7 and the rarity of contractions should have led to its extinction within a few generations. There is no specific drug therapy for this neurodegenerative disorder. Currently, therapy remains purely symptomatic. Cellular models and SCA7 transgenic mice have been generated which constitute valuable resources for studying the disease mechanism. Understanding the pathogenetic mechanisms of neurodegeneration in SCAs should lead to the identification of potential therapeutic targets and ultimately facilitate drug discovery. Here we summarize the clinical, pathological, and genetic aspects of SCA7, and review the current understanding of the pathogenesis of this disorder. Further, we also review the potential therapeutic strategies that are currently being explored in polyglutamine diseases.

  • PDF

Structural Disorganization of Intestinal Tumor Spheroid by Microbial Ribotoxins (방사선 모사 미생물 유래 리보솜 스트레스에 의한 대장암 스페로이드 구조 결함 유발)

  • Kim, Juil;Kim, Joongkon;Yu, Mira;Moon, Yuseok
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.164-171
    • /
    • 2019
  • Radiation therapy has many side effects, such as digestive mucosal ulcers, without regard to its efficacy. The purpose of this study is to address an alternative method to replace the limitation of radiation therapy using radiomimetic microbial ribotoxins. In the evaluation of cancer therapy, we analyzed the formation of colorectal cancer (CRC) cell spheroids, which can take into account the heterogeneous cellular constitution, tumor stem cells, and the surrounding microenvironment. Ribotoxic stress interfered with the spheroid structure composed of relatively small clusters. Spheroids under ribotoxic stress were structurally sparse and their shrinkage was very slow. In the control group, the clusters of strongly aggregated cells were resistant to physical stress, but the ribotoxic stress-exposed spheroids were easily broken up by the physical stress. Moreover, the ribosome-insulted CRC cells slowly migrated to form clusters and the cell-cell junctional points in the ribosome-insulted spheroids were rarer than those in the control CRC spheroid. Moreover, levels of the cell-to-cell junctional protein E-cadherin were suppressed by ribotoxic stress in both allograft and xenograft spheroids. In conclusion, the radiomimetic microbial ribotoxins induced structural defects in CRC cell spheroids via retardation of migration and cell-cell junction in the formation of three-dimensional structures, and provides a basis for the mechanism of pharmacological radiomimetic anticancer actions as an alternate to radiotherapy against cancer.

A Study on Implementation of Indoor Positioning Simulator through Indoor Positioning API Development (실내측위 API개발을 통한 실내측위 시뮬레이터 구현에 관한 연구)

  • Shin, Chang Soo;Kim, Sung Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.873-881
    • /
    • 2023
  • The evolution of civil engineering technology, exemplified by recent milestones like the completion of the Gangnam Global Business Center (GBC), has fostered the construction of expansive civil and architectural structures both above and below the earth's surface. This surge in construction necessitates a commensurate advancement in research and technology pertaining to safety protocols applicable to these vast edifices. Such protocols encompass a spectrum of concerns, ranging from the preemptive mitigation of accidents to the effective management of exigencies such as fires. As the trajectory of construction endeavors continues unabated, encompassing both subterranean and elevated domains, a concomitant imperative emerges to refine the methodologies underpinning precise indoor positioning. To address this need, an innovative web-based simulator has been devised to emulate indoor positioning scenarios for rigorous testing. This research further entails the development of an indoor positioning data Application Programming Interface (API) fortified by Geographic Information System (GIS) spatial operation techniques. This API is anchored in the construction of intricate test data, centered on the spatial layout of building 13 at the Electronics and Telecommunications Research Institute (ETRI). Consequently, the study renders feasible the expeditious provisioning of diverse signal-based and image-based spatial information, pivotal for enhancing the navigational acumen of mobile devices. Path delineation, cellular signal mapping, landmark identification, and ancillary navigational aids are among the manifold datasets promptly furnished by the indoor positioning data API. In summation, this study engenders a crucial leap towards the fortification of safety protocols and navigational precision within the expansive confines of modern architectural wonders.

Genetic Studies on the Sea Urchin Embryogenesis and Skeletogenesis (성게의 발생과 뼈대형성의 유전학적 연구)

  • Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.265-273
    • /
    • 2001
  • The sea urchin has been used as sea food in many countries. This species has also been an important organism of embryological studies for more than a century. In recent years, sea urchin embryos are being used as testing materials for toxicity of pollutants and toxins. Usefulness of sea urchin embryos as experimental models comes from the easiness in obtaining sea urchin samples and a lot of gametes, in rearing embryos in the laboratory, in observing the cellular movement and organ formation during the embryogenesis and in manipulating blastomeres and genetic maferials. The sea urchin in itself is a key organism for the understanding of deuterostome evolution from the protostomes and of indirect development of marine invertebrates which undergo the planktotrophic larval stage. A fertilized sea urchin egg goes through rapid cleavage and becomes a 60 cell embryo 7hr after fertilization. It then develops into a morula, a blastula, a gastrula and finally a pluteus larva approximately 70 hr after fertilization. At the 60 cell stage, the embryo comprises of five territories that express territory-speciflc genes and later form different organs. Micromeres at the vegetal pole ingress into the blastoceol and become the primary mesenchyme cells(PMCs). PMCs express genes involved in skeletogenesis such as SM30, SM37, SM50, PM27, msp130. Among the genes, SM37 and SM50 are considered to be members of a gene family which is characterized by early blastula expression, Glycine-Proline-Glutamine rich repeat structures and spicule matrix forming basic proteins. Genetic studies on the sea urchin embryos help understand the molecular basis of indirect development of marine invertebrates and also of the biomineralization common to the animal kingdom.

  • PDF