• Title/Summary/Keyword: cellular structures

Search Result 345, Processing Time 0.025 seconds

The SL1 Stem-Loop Structure at the 5′-End of Potato virus X RNA Is Required for Efficient Binding to Host Proteins and forViral Infectivity

  • Kwon, Sun-Jung;Kim, Kook-Hyung
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.63-75
    • /
    • 2006
  • The 5′-region of Potato virus X (PVX) RNA, which contains an AC-rich, single-stranded region and stem-loop structure 1 (SL1), affects RNA replication and assembly. Using Systemic Evolution of Ligands by EXponential enrichment (SELEX) and the electrophoretic mobility shift assay, we demonstrate that SL1 interacts specifically with tobacco protoplast protein extracts (S100). The 36 nucleotides that correspond to the top region of SL1, which comprises stem C, loop C, stem D, and the tetra loop (TL), were randomized and bound to the S100. Remarkably, the wild-type (wt) sequence was selected in the second round, and the number of wt sequences increased as selection proceeded. All of the selected clones from the fifth round contained the wt sequence. Secondary structure predictions (mFOLD) of the recovered sequences revealed relatively stable stem-loop structures that resembled SL1, although the nucleotide sequences therein were different. Moreover, many of the clones selected in the fourth round conserved the TL and C-C mismatch, which suggests the importance of these elements in host protein binding. The SELEX clone that closely resembled the wt SL1 structure with the TL and C-C mismatch was able to replicate and cause systemic symptoms in plants, while most of the other winners replicated poorly only on inoculated leaves. The RNA replication level on protoplasts was also similarly affected. Taken together, these results indicate that the SL1 of PVX interacts with host protein(s) that play important roles related to virus replication.

Complete Mitochondrial Genome Sequence of the Yellow-Spotted Long-Horned Beetle Psacothea hilaris (Coleoptera: Cerambycidae) and Phylogenetic Analysis among Coleopteran Insects

  • Kim, Ki-Gyoung;Hong, Mee Yeon;Kim, Min Jee;Im, Hyun Hwak;Kim, Man Il;Bae, Chang Hwan;Seo, Sook Jae;Lee, Sang Hyun;Kim, Iksoo
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.429-441
    • /
    • 2009
  • We have determined the complete mitochondrial genome of the yellow-spotted long horned beetle, Psacothea hilaris (Coleoptera: Cerambycidae), an endangered insect species in Korea. The 15,856-bp long P. hilaris mitogenome harbors gene content typical of the animal mitogenome and a gene arrangement identical to the most common type found in insect mitogenomes. As with all other sequenced coleopteran species, the 5-bp long TAGTA motif was also detected in the intergenic space sequence located between $tRNA^{Ser}$(UCN) and ND1 of P. hilaris. The 1,190-bp long non-coding A+T-rich region harbors an unusual series of seven identical repeat sequences of 57-bp in length and several stretches of sequences with the potential to form stem-and-loop structures. Furthermore, it contains one $tRNA^{Arg}$-like sequence and one $tRNA^{Lys}$-like sequence. Phylogenetic analysis among available coleopteran mitogenomes using the concatenated amino acid sequences of PCGs appear to support the sister group relationship of the suborder Polyphaga to all remaining suborders, including Adephaga, Myxophaga, and Archostemata. Among the two available infraorders in Polyphaga, a monophyletic Cucujiformia was confirmed, with the placement of Cleroidea as the basal lineage for Cucujiformia. On the other hand, the infraorder Elateriformia was not identified as monophyletic, thereby indicating that Scirtoidea and Buprestoidea are the basal lineages for Cucujiformia and the remaining Elateriformia.

Development of Inhibitors against TraR Quorum-Sensing System in Agrobacterium tumefaciens by Molecular Modeling of the Ligand-Receptor Interaction

  • Kim, Cheoljin;Kim, Jaeeun;Park, Hyung-Yeon;Park, Hee-Jin;Kim, Chan Kyung;Yoon, Jeyong;Lee, Joon-Hee
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.447-453
    • /
    • 2009
  • The quorum sensing (QS) inhibitors that antagonize TraR, a receptor protein for N-3-oxo-octanoyl-L-homoserine lactones (3-oxo-C8-HSL), a QS signal of Agrobacterium tumefaciens were developed. The structural analogues of 3-oxo-C8-HSL were designed by in silico molecular modeling using SYBYL packages, and synthesized by the solid phase organic synthesis (SPOS) method, where the carboxamide bond of 3-oxo-C8-HSL was replaced with a nicotinamide or a sulfonamide bond to make derivatives of N-nicotinyl-L-homoserine lactones or N-sulfonyl-L-homoserine lactones. The in vivo inhibitory activities of these compounds against QS signaling were assayed using reporter systems and compared with the estimated binding energies from the modeling study. This comparison showed fairly good correlation, suggesting that the in silico interpretation of ligand-receptor structures can be a valuable tool for the pre-design of better competitive inhibitors. In addition, these inhibitors also showed anti-biofilm activities against Pseudomonas aeruginosa.

MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions

  • Park, Sang Mee;Park, Hae Ryoun;Lee, Ji Hye
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.151-161
    • /
    • 2017
  • Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled, a Drosophila homolog of human mitogen-activated protein kinase 3 (MAPK3) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gq, and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93. In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2, Gq, and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.

Improved Purification of Thermophilic FoF1-ATP Synthase c-Subunit Rings and Solid-State NMR Characterization of Them in Different Lipid Membranes

  • Bak, Suyeon;Kang, Su-Jin;Suzuki, Toshiharu;Yoshida, Masasuke;Fujiwara, Toshimichi;Akutsu, Hideo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • ATP synthase produces ATP, a major energy source for metabolic processes in organisms, from ADP and inorganic phosphate in cellular membranes. ATP synthase is known as a rotary motor, in which the c-subunit ring functions as a rotor. In this work, we have tried to develop a more general preparation procedure of thermophilic $F_oc$-ring ($TF_oc$-ring) for NMR measurements. The expression of $TF_oF_1$ is easily affected by various experimental conditions such as temperature, shape and size of a flask, a volume of medium, and shaking rate of an incubator. Accordingly, we have tried to optimize the expression conditions of $TF_oF_1$. $TF_oc$-rings were purified from $TF_oF_1$ according to a reported method. We modified purification procedures to improve purity and yield of $TF_oc$. On top of them, we found a new combination of detergents for the purification at anion-exchange column chromatography. To examine the effect of lipid environments on the structure, the $TF_oc$-rings were reconstituted into two kinds of lipid bilayers, namely, saturated and unsaturated lipid ones. Then, we have compared characteristics of the $TF_oc$-ring structures in these membranes with solid-state NMR.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

Application of Thallium Autometallography for Observation of Changes in Excitability of Rodent Brain following Acute Carbon Monoxide Intoxication (흰쥐에서 급성 일산화탄소 중독 후 뇌 흥분성 변화를 규명하기 위한 탈륨 Autometallography의 적용)

  • Lee, Min Soo;Yang, Seung Bum;Heo, Jun Ho
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.17 no.2
    • /
    • pp.66-78
    • /
    • 2019
  • Purpose: Thallium (TI+) autometallography is often used for the imaging of neuronal metabolic activity in the rodent brain under various pathophysiologic conditions. The purpose of this study was to apply a thallium autometallographic technique to observe changes in neuronal activity in the forebrain of rats following acute carbon monoxide (CO) intoxication. Methods: In order to induce acute CO intoxication, adult Sprague-Dawley rats were exposed to 1100 ppm of CO for 40 minutes, followed by 3000 ppm of CO for 20 minutes. Animals were sacrificed at 30 minutes and 5 days after induction of acute CO intoxication for thallium autometallography. Immunohistochemical staining and toluidine blue staining were performed to observe cellular damage in the forebrain following intoxication. Results: Acute CO intoxication resulted in significant reduction of TI+ uptake in major forebrain structures, including the cortex, hippocampus, thalamus, and striatum. In the cortex and hippocampal CA1 area, marked reduction of TI+ uptake was observed in the cell bodies and dendrites of pyramidal neurons at 30 minutes following acute CO intoxication. There was also strong uptake of TI+ in astrocytes in the hippocampal CA3 area following acute CO intoxication. However, there were no significant histological findings of cell death and no reduction of NeuN (+) neuronal populations in the cortex and hippocampus at 5 days after acute CO intoxication. Conclusion: The results of this study suggest that thallium autometallography can be a new and useful technique for imaging functional changes in neural activity of the forebrain structure following mild to moderate CO intoxication.

Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates

  • Liers, Christiane;Ullrich, Rene;Kellner, Harald;Chi, Do Huu;Quynh, Dang Thu;Luyen, Nguyen Dinh;Huong, Le Mai;Hofrichter, Martin;Nghi, Do Huu
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1438-1445
    • /
    • 2021
  • A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 ㎍/g and improved to 270 ㎍/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.

Structure and Function of the Autolysin SagA in the Type IV Secretion System of Brucella abortus

  • Hyun, Yongseong;Baek, Yeongjin;Lee, Chanyoung;Ki, Nayeon;Ahn, Jinsook;Ryu, Sangryeol;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.517-528
    • /
    • 2021
  • A recent genetic study with Brucella abortus revealed the secretion activator gene A (SagA) as an autolysin component creating pores in the peptidoglycan (PGN) layer for the type IV secretion system (T4SS) and peptidoglycan hydrolase inhibitor A (PhiA) as an inhibitor of SagA. In this study, we determined the crystal structures of both SagA and PhiA. Notably, the SagA structure contained a PGN fragment in a space between the N- and C-terminal domains, showing the substrate-dependent hinge motion of the domains. The purified SagA fully hydrolyzed the meso-diaminopimelic acid (DAP)-type PGN, showing a higher activity than hen egg-white lysozyme. The PhiA protein exhibiting tetrameric assembly failed to inhibit SagA activity in our experiments. Our findings provide implications for the molecular basis of the SagA-PhiA system of B. abortus. The development of inhibitors of SagA would further contribute to controlling brucellosis by attenuating the function of T4SS, the major virulence factor of Brucella.

A Primer on Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Medically Refractory Epilepsy

  • Lee, Eun Jung;Kalia, Suneil K.;Hong, Seok Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.353-360
    • /
    • 2019
  • Epilepsy surgery that eliminates the epileptogenic focus or disconnects the epileptic network has the potential to significantly improve seizure control in patients with medically intractable epilepsy. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has been an established option for epilepsy surgery since the US Food and Drug Administration cleared the use of MRgLITT in neurosurgery in 2007. MRgLITT is an ablative stereotactic procedure utilizing heat that is converted from laser energy, and the temperature of the tissue is monitored in real-time by MR thermography. Real-time quantitative thermal monitoring enables titration of laser energy for cellular injury, and it also estimates the extent of tissue damage. MRgLITT is applicable for lesion ablation in cases that the epileptogenic foci are localized and/or deep-seated such as in the mesial temporal lobe epilepsy and hypothalamic hamartoma. Seizure-free outcomes after MRgLITT are comparable to those of open surgery in well-selected patients such as those with mesial temporal sclerosis. Particularly in patients with hypothalamic hamartoma. In addition, MRgLITT can also be applied to ablate multiple discrete lesions of focal cortical dysplasia and tuberous sclerosis complex without the need for multiple craniotomies, as well as disconnection surgery such as corpus callosotomy. Careful planning of the target, the optimal trajectory of the laser probe, and the appropriate parameters for energy delivery are paramount to improve the seizure outcome and to reduce the complication caused by the thermal damage to the surrounding critical structures.