Browse > Article
http://dx.doi.org/10.1007/s10059-009-0064-5

Complete Mitochondrial Genome Sequence of the Yellow-Spotted Long-Horned Beetle Psacothea hilaris (Coleoptera: Cerambycidae) and Phylogenetic Analysis among Coleopteran Insects  

Kim, Ki-Gyoung (Biological Resources Research Department, National Institute of Biological Resources)
Hong, Mee Yeon (College of Agriculture and Life Sciences, Chonnam National University)
Kim, Min Jee (College of Agriculture and Life Sciences, Chonnam National University)
Im, Hyun Hwak (College of Agriculture and Life Sciences, Chonnam National University)
Kim, Man Il (College of Agriculture and Life Sciences, Chonnam National University)
Bae, Chang Hwan (Biological Resources Research Department, National Institute of Biological Resources)
Seo, Sook Jae (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University)
Lee, Sang Hyun (College of Agriculture and Life Sciences, Chonnam National University)
Kim, Iksoo (College of Agriculture and Life Sciences, Chonnam National University)
Abstract
We have determined the complete mitochondrial genome of the yellow-spotted long horned beetle, Psacothea hilaris (Coleoptera: Cerambycidae), an endangered insect species in Korea. The 15,856-bp long P. hilaris mitogenome harbors gene content typical of the animal mitogenome and a gene arrangement identical to the most common type found in insect mitogenomes. As with all other sequenced coleopteran species, the 5-bp long TAGTA motif was also detected in the intergenic space sequence located between $tRNA^{Ser}$(UCN) and ND1 of P. hilaris. The 1,190-bp long non-coding A+T-rich region harbors an unusual series of seven identical repeat sequences of 57-bp in length and several stretches of sequences with the potential to form stem-and-loop structures. Furthermore, it contains one $tRNA^{Arg}$-like sequence and one $tRNA^{Lys}$-like sequence. Phylogenetic analysis among available coleopteran mitogenomes using the concatenated amino acid sequences of PCGs appear to support the sister group relationship of the suborder Polyphaga to all remaining suborders, including Adephaga, Myxophaga, and Archostemata. Among the two available infraorders in Polyphaga, a monophyletic Cucujiformia was confirmed, with the placement of Cleroidea as the basal lineage for Cucujiformia. On the other hand, the infraorder Elateriformia was not identified as monophyletic, thereby indicating that Scirtoidea and Buprestoidea are the basal lineages for Cucujiformia and the remaining Elateriformia.
Keywords
coleopteran phylogeny; complete mitochondrial genome; Psacothea hilaris; tRNA-like sequence; yellow-spotted long-horned beetle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Adachi, J., and Hasegawa, M. (1996). Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42, 459-468   DOI
2 Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijin, M.H.L., Droujn, A.R.J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature 290, 457-465   DOI   ScienceOn
3 Beutel, R.G. (1995). Phylogenetic analysis of Elateriformia (Coleoptera: Polyphaga) based on larval characters. J. Zool. Syst. Evol. Res, 33, 145-171   DOI
4 Beutel, R.G. (1997). Uber phylogenese und evolution der Coleoptera (Insecta), insbesondere der Adephaga. Verh. Naturwiss. Ver. Hamburg 31, 1-164
5 Cha, S.Y., Yoon, H.J., Lee, E.M., Yoon, M.H., Hwang, J.S., Jin, B.R., Han, Y.S., and Kim, I. (2007). The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera: Apidae). Gene 392, 206-220   DOI   ScienceOn
6 Dowton, M., Castro, L.R., Campbell, S.L., Bargon, S.D., and Austin, A.D. (2003). Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction. J. Mol. Evol. 56, 517-526   DOI
7 Fauron, C.M.R., and Wolstenholme, D.R. (1980). Extensive diversity among Drosophila species with respect to nucleotide sequences within the adenine+thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Res. U, 2439-2452   DOI   ScienceOn
8 Guindon, S., Lethiec, F., Duroux, P., and Gascuel, O. (2005). PHYML: online-a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33, W557-559   DOI   ScienceOn
9 Lawrence, J.F., and Newton, A.F. (1982). Evolution and classification of beetles. Annu. Rev. Ecol. Syst. 13, 261-290   DOI
10 Marvaldi, A.E., Duckett, C.N., Kjer, K.M., and Gillespie, J.J. (2008). Structural alignment of 18S and 28S rDNA sequences provides insights into phylogeny of Phytophaga (Coleoptera: Curculionoidea and Chrysomeloidea). Zool. Scr. 38, 63-77   DOI   ScienceOn
11 Monforte, A., Barrio, E., and Latorre, A. (1993). Characterization of the= length polymorphism in the A+T-rich region of the Drosophila obscura group species. J. Mol. Evol. 36, 214-223   DOI   ScienceOn
12 Murata, K., Satou, M., Matsushima, K., Satake, S., and Yamamoto, Y. (2004). Retrospective estimation of genetic diversity of an extinct oriental white stork (Ciconia boyciana) population in Japan using mitochondrial specimens and implications for reintroduction programs. Conserv. Genetics 5, 553-560   DOI   ScienceOn
13 Rand, D.M., and Harrison, R.G. (1989). Molecular population genetics of mtDNA size variation in crickets. Genetics 121, 551-569
14 Schultheis, A.S., Weigt, L.A., and Hendricks, A.C. (2002). Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera: utility of tandem repeatcontaining regions in studies of population genetics and evolutionary history. Insect Mol. Biol. 11, 605-610   DOI   ScienceOn
15 Taanman, J.W. (1999). The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta 1410, 103-123   DOI   ScienceOn
16 Stewart, J.B., and Beckenbach, A.T. (2003). Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata. Mol. Phylogenet. Evol. 26, 513-526   DOI   ScienceOn
17 Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680   DOI   ScienceOn
18 Yukuhiro, K., Sezutsu, H., Itoh, M., Shimizu, K., and Banno, Y. (2002). Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silk moth, Bombyx mandarina, and its close relative, the domesticated silk moth, Bombyx mori Mol. Biol. Evol. 19, 1385-1389   DOI   ScienceOn
19 Zhang, D.X., and Hewitt, G.M. (1997). Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Evol. 25, 99-120   DOI   ScienceOn
20 Beutel, R., and Haas, F. (2000). Phylogenetic relationships of the suborders of Coleoptera (Insecta). Cladistics 16, 103-141   DOI
21 Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 173-216
22 Nardi, F., Carapelli, A., Dallai, R., and Frati, F. (2003). The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Mol. Biol. 12, 605-611   DOI   ScienceOn
23 Inohira, K., Hara, T., and Matsuura, E.T. (1997). Nucleotide sequence divergence in the A+T-rich region of mitochondrial DNA in Drosophila simulans and Drosophila mauritiana. Mol. Biol. Evol. 14, 814-822   DOI   ScienceOn
24 Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic tool. Curr. Opin. Genet. Dev. 8, 668-674
25 Hong, M.Y., Lee, E.M., Jo, Y.H., Park, H.C., Kim, S.R., Hwang, J.S., Jin, B.R., Kang, P.D., Kim, K.-G., Han, Y.S., et al. (2008). Complete nucleotide sequence and organization of the mito-genome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene 413, 49-57   DOI   ScienceOn
26 Salvato, P., Simonato, M., Battisti, A., and Negrisolo, E. (2008). The complete mitochondrial genome of the bag-shelter moth Ochrogaster Iunifer (Lepidoptera, Notodontidae). BMC Genomics 9, 331   DOI   ScienceOn
27 Sheffield, N.C., Song, H., Cameron, S.L., and Whiting, M.F. (2008). A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol. Biol. Evol. 25, 2499-2509   DOI   ScienceOn
28 Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294-299
29 Kukalova-Peck, J., and Lawrence, J.F. (1993). Evolution of the hind wing in Coleoptera. Can. Entomol. 125, 181-258   DOI   ScienceOn
30 Wolstenholme, D.R. (1992). Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141, 173-216   DOI   PUBMED
31 Kim, I., Lee, E.M., Seol, K.Y., Yun, E.Y., Lee, Y.B., Hwang, J.S., and Jin, B.R. (2006). The mitochondrial genome of the Korean hairstreak, Coreana raphaelis(Lepidoptera: Lycaenidae). Insect Mol. Biol. 15, 217-225   DOI   ScienceOn
32 Bocakova, M., Bocak, L., Hunt, T., Teravainen, M., and Vogler, A.P. (2007). Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics 23, 477-496   DOI   ScienceOn
33 Cameron, S.L., and Whiting, M.F. (2008). The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408, 112-123   DOI   ScienceOn
34 Abascal, F., Zardoya, R., and Posada, D. (2005). ProTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104-2105   DOI   ScienceOn
35 Brodsky, L.I., Vasiliev, A.V., Kalaidzidis, Y.L., Osipov, Y.S., Tatuzov, A.R.L., and Feranchuk, S.I. (1992). GeneBee: the program package for biopolymer structure analysis. Dimacs 8, 127-139
36 Crozier, R.H., and Crozier, Y.C. (1993). The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133, 97-117
37 Lawrence, J.F. (1982). Coleoptera. In Synopsis and Classificatiion of Living Organisms, S. Parker, ed. (New York, USA: McGraw-Hill), pp. 482-553
38 Ojala, D., Montoya, J., and Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470-474   DOI   ScienceOn
39 Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19, 716-723   DOI
40 Hebert, P.D.A., Cywinska, A., Ball, S.L., and deWaard, J.R. (2003). Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313-322   DOI   ScienceOn
41 Nam, S.H. (1996). The insects of Korea (Seoul, Korea: Kyo-Hak Publishing Co.)
42 Renfu, S., Nick, J.H., Campbell, H., and Barker, S.C. (2001). Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Mol. Biol. Evol. 18, 858-865   DOI   PUBMED   ScienceOn
43 Swofford, D.L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods) ver 4.10 (Sunderland, USA: Sinauer Associates)
44 Hwang, U.W., Friedrich, M., Tautz, D., Park, C.J., and Kim, W. (2001). Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413, 154-157   DOI   ScienceOn
45 Joyce, D.A., and Pullin, A.S. (2004). Using genetics to inform reintroduction strategies for the chequered skipper butterfly (Carterocephalus Palaemon, Pallas) in England. J. Insect Conserv. 8, 69-74   DOI   ScienceOn
46 Lewis, D.L., Farr, C.L., and Kaguni, L.S. (1995). Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Mol. Biol. 4, 263-278   DOI   ScienceOn
47 Li, X., Ogoh, K., Ohba, N., Liang, X., and Ohmiya, Y. (2007). Mitochondrial genomes of two luminous beetles, Rhagophthalmus lufengensis and R. ohbai (Arthropoda, Insecta, Coleoptera). Gene 392, 196-205   DOI   ScienceOn
48 Caterino, M.S., Shull, V.L., Hammond, P.M., and Vogler, A.P. (2002). Basal relationships of Coleoptera inferred from 18S rDNA sequences. Zool. Scr. 31, 41-49   DOI   ScienceOn
49 Kim, S.R., Kim, M.I., Hong, M.Y., Kim, K.Y., Kang, P.D., Hwang, J.S., Han, Y.S., Jin, B.R., and Kim, I. (2009). The complete mitogenome sequence of the Japanese oak silkmoth, antheraea uamamai(Lepidoptera: Saturniidae). Mol. Biol. Rep. (in press) (DOI 10.1007/s11033-008-9393-2)   DOI   ScienceOn
50 Moritz, C., Dowling, T.E., and Brown, W.M. (1987). Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 18, 269-292   DOI
51 Shao, R., Campbell, N.J.H., and Barker, S.C. (2001). Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, heterodozus macropus (Phthiraptera). Mol. Biol. Evol. 18, 858-865   DOI   ScienceOn
52 Hong, M.Y., Jeong, H.C., Kim, M.J., Jeong, H.U., Lee, S.H., and Kim, I. (2009). Complete mitogenome sequence of the jewel beetle, chrysochroa fulgidissma (Coleoptera: Buprestidae). Mitochondrial DNA. (in press) (DOI 10.1080/19401730802644978)   DOI   ScienceOn
53 Brehm, A., Harris, D.J., Hernandez, M., Cabrera, V.M., Larruga, J.M., Pinto, F.M., and Gonzalez, A.M. (2001). Structure and evolution of the mitochondrial DNA complete control region in the Drosophila subobscura subgroup. Insect Mol. Biol. 10, 573-578   DOI   ScienceOn
54 Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., St. John, O., Wild, R., Hammond, P.M., Ahrens, D., Balke, M., Caterino, M.S., et al. (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318, 1913-1916   DOI   ScienceOn
55 Avise, J.C. (1994). Molecular markers, natural history and evolution (New York: Champman & Hall)
56 Huelsenbeck, J.P., and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755   DOI   ScienceOn
57 Lowe, T.M., and Eddy, S.R. (1997). tRNA-scan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964   DOI
58 Zhang, D., Szymura, J.M., and Hewitt, G.M. (1995). Evolution and structural conservation of the control region of insect mitochondrial DNA. J. Mol. Evol. 40, 382-391   DOI   ScienceOn
59 Cantatore, P., Gadaleta, M.N., Roberti, M., Saccone, C., and Wilson, A.C. (1987). Duplication and remodeling of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 329, 853-855   DOI   ScienceOn
60 Caterino, M.S., Hunt, T., and Vogler, A.P. (2005). On the constitution and phylogeny of Staphyliniformia (Insecta: Coleoptera). Mol. Phylogenet. Evol. 34, 655-672   DOI   ScienceOn
61 Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95-98
62 Bae, J.S., Kim, I., Sohn, H.D., and Jin, B.R. (2004). The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol. Phylogenet. Evol. 32, 978-985   DOI   ScienceOn
63 Boore, J.L. (1999). Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767-1780   DOI   ScienceOn
64 Friedrich, M., and Muquim, N. (2003). Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Trivolium castanaeum Mol. Phylogenet. Evol. 26, 502-512   DOI   ScienceOn
65 Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791   DOI   ScienceOn
66 Arnoldi, F.G., Ogoh, K., Ohmiya, Y., and Viviani, V.R. (2007). Mitochondrial genome sequence of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae): mitochondrial genes utility to investigate the evolutionary history of Coleoptera and its bioluminescence. Gene 405, 1-9   DOI   ScienceOn