• 제목/요약/키워드: cellular protective

검색결과 491건 처리시간 0.03초

뱀장어(Anguilla japonica) 추출 Carnosine이 과산화수소로 유도된 인체 백혈구의 DNA 손상과 Repair에 미치는 효과 (The Effect of Carnosine Extracted from Eels Anguilla japonica on Oxidative DNA Damage Induced by Hydrogen Peroxide and the DNA Repair Capacity of Human Leukocytes)

  • 송호수
    • 한국수산과학회지
    • /
    • 제50권5호
    • /
    • pp.520-526
    • /
    • 2017
  • Carnosine was recently reported to protect against the DNA damage induced by oxidative stress. In this study, we investigated the protective effect of eel Anguilla japonica carnosine extracts prepared using different methods (heat treatment extracts, HTEs; ion exchange chromatography, IEC; ultrafiltration permeation, UFP) on leukocyte DNA damage using the comet assay. Human leukocytes were incubated with extracts of eel carnosine at concentrations (of 10, 50, $100{\mu}g/mL$), and then subjected to an oxidative stimulus [$200{\mu}M$ hydrogen peroxide ($H_2O_2$)]. Pretreatment of the cells for 30 min with carnosine significantly reduced the genotoxicity of $H_2O_2$ measured as DNA strand breaks. The protective effects of the three types of extract (HTE, IEC, and UFP) increased with concentration. At the highest concentration (100 g/mL). there were no statistical differences in oxidative damage between each extract treatment and PBS-treated negative controls. When leukocytes were incubated with carnosine for 30 min after exposure to $H_2O_2$. the protective ability of each extract changed. Therefore, eel carnosine inhibits the $H_2O_2$ induced damage to cellular DNA in human leukocytes, supporting the protective effect of this compound against oxidative damage.

Protective effects of Betula platyphylla var. japonica extracts against the cellular damage induced by reactive oxygen species

  • Ji, Sang-Jin;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • 제34권1호
    • /
    • pp.15-20
    • /
    • 2009
  • In our present study, total methanol extracts prepared from B. platyphylla var. japonica showed a significant increase in cell proliferation upon the induction of oxidative stress by hydrogen peroxide or $\gamma$-ray irradiation. Total methanol extracts were fractionated into five separate preparations i.e. n-hexane, dichloromethane, ethylacetate, n-butanol and water fractions. Among these, the ethylacetate and butanol fractions of B. platyphylla var. japonica showed the highest protective effects against oxidative stress induced by hydrogen peroxide. These fractions also showed strong protective effects against $\gamma$-ray irradiation. When we evaluated the cytotoxicity of these fractions, the butanol fraction showed no effects in a colony formation assay. In addition, the butanol fraction showed a cell proliferation activation effect evidenced by significant increase in the colony formation of $\gamma$-ray irradiated cells. Both a radical scavenging activity and clonogenic activity assay suggested that the mechanism behind this protective effect against reactive oxygen species may be due to the radical scavenging and cell proliferation activity of B. platyphylla var. japonica extracts.

사람피부세포에서 카렌둘라 꽃 추출물의 항산화 및 산화적 스트레스에 대한 세포보호효과 (Antioxidant and Cellular Protective Effects against Oxidative Stress of Calendula officinalis Flowers Extracts in Human Skin Cells)

  • 현송화;김가윤;유지연;김지원;양예림;전영희;정윤주;김아랑;박수남
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.620-626
    • /
    • 2016
  • 본 연구에서는 카렌둘라 꽃의 50% 에탄올 추출물과 분획물의 총 페놀과 플라보노이드 함량, 항산화 활성 및 사람피부세포에서 산화적 스트레스에 대한 세포보호효과를 확인하였다. 자유 라디칼 소거 활성($FSC_{50}$), 활성산소 소거 활성(총 항산화능, $OSC_{50}$) 및 사람피부세포 내 ROS 억제활성을 통하여 카렌둘라 꽃의 50% 에탄올 추출물 및 분획물들의 항산화 활성을 측정하였다. 그 결과, 카렌둘라 꽃의 50% 에탄올 추출물보다 그것의 에틸아세테이트 및 아글리콘 불획물이 더 큰 항산화 활성을 나타내었다. 세포보호효과 실험에서 과산화수소를 사람피부세포에 처리하여 세포손상을 유도하였을 때, 에틸아세테이트 분획은 $0.05-3.13{\mu}g/mL$에서 농도 의존적으로 세포보호효과를 나타내었다. 또한, UVB를 사람피부세포에 조사하여 세포손상을 유도하였을 때, 아글리콘 분획은 $1.56-3.13{\mu}g/mL$에서 농도 의존적으로 세포보호효과를 나타내었다. 이상의 결과들은 산화적 스트레스에 노출된 사람피부세포에서 카렌둘라 꽃의 분획물들이 ROS 소거함으로써 세포를 보호하는 천연 항산화제로 화장품에 응용 가능함을 시사하였다.

감태(Ecklonia cava) 추출물의 항산화 및 세포보호 활성 (Antioxidant and Cellular Protective Activities of Ecklonia cava Extracts against Reactive Oxyegen Species)

  • 유차영;김시윤;박정원;성수안;김다애;박지현;현송화;박수남
    • 대한화장품학회지
    • /
    • 제41권3호
    • /
    • pp.287-294
    • /
    • 2015
  • 본 연구에서는 갈조류인 감태의 추출물과 그 분획들의 항산화 활성을 측정하였다. 모든 실험에서 감태의 50% 에탄올 추출물과 에틸아세테이트 분획, 아글리콘 분획을 사용하였다. DPPH (1,1-diphenyl-2-picrylhydrazyl)법을 이용한 자유 라디칼 소거 활성($FSC_{50}$)에서 에틸아세테이트 분획($FSC_{50}=6.98{\mu}g/mL$)과 아글리콘 분획($7.03{\mu}g/mL$)은 비교물질인 (+)-${\alpha}$-tocopherol($8.98{\mu}g/mL$)과 유사한 활성을 나타냈다. 루미놀 발광법을 이용하여 $Fe^{3+}-EDTA/H_2O_2$계에서 활성산소 소거 활성(총 항산화능, $OSC_{50}$) 결과, 모든 추출물과 분획들 중에서 아글리콘 분획($OSC_{50}=14.48{\mu}g/mL$)이 가장 큰 항산화능을 나타내었으나, 강력한 항산화제인 L-ascorbic acid ($6.88{\mu}g/mL$)보다는 낮았다. $^1O_2$로 유도된 사람 적혈구 세포 손상에 있어서 50% 에탄올 추출물은 $5{\sim}50{\mu}g/mL$에서 농도 의존적인 세포보호 효과를 나타냈다. $10{\mu}g/mL$에서 에틸아세테이트 분획과 아글리콘 분획의 세포보호 효과(${\tau}_{50}$)는 각각 442.0 min 및 539.9 min으로 세포보호 활성이 크게 나타났다. 3종류의 감태 추출물 및 분획은 $10{\mu}g/mL$에서, 비교물질인 지용성 항산화제 (+)-${\alpha}$-tocopherol (40.6 min)보다 훨씬 더 큰 세포보호 활성을 나타냈다. 이러한 결과들은 감태 추출물과 그 분획물들이 항노화 관련 화장품 분야에서 항산화제로서 이용 가능성이 있음을 시사하였다.

Capsaicin Ameliorates Cisplatin-Induced Renal Injury through Induction of Heme Oxygenase-1

  • Jung, Sung-Hyun;Kim, Hyung-Jin;Oh, Gi-Su;Shen, AiHua;Lee, Subin;Choe, Seong-Kyu;Park, Raekil;So, Hong-Seob
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.234-240
    • /
    • 2014
  • Cisplatin is one of the most potent chemotherapy agents. However, its use is limited due to its toxicity in normal tissues, including the kidney and ear. In particular, nephrotoxicity induced by cisplatin is closely associated with oxidative stress and inflammation. Heme oxygenase-1(HO-1), the rate-limiting enzyme in the heme metabolism, has been implicated in a various cellular processes, such as inflammatory injury and anti-oxidant/oxidant homeostasis. Capsaicin is reported to have therapeutic potential in cisplatin-induced renal failures. However, the mechanisms underlying its protective effects on cisplatin-induced nephrotoxicity remain largely unknown. Herein, we demonstrated that administration of capsaicin ameliorates cisplatin-induced renal dysfunction by assessing the levels of serum creatinine and blood urea nitrogen (BUN) as well as tissue histology. In addition, capsaicin treatment attenuates the expression of inflammatory mediators and oxidative stress markers for renal damage. We also found that capsaicin induces HO-1 expression in kidney tissues and HK-2 cells. Notably, the protective effects of capsaicin were completely abrogated by treatment with either the HO inhibitor ZnPP IX or HO-1 knockdown in HK-2 cells. These results suggest that capsaicin has protective effects against cisplatin-induced renal dysfunction through induction of HO-1 as well as inhibition oxidative stress and inflammation.

Protective Activity of Fucoidan and Alginic Acid against Free Radical-Induced Oxidative Stress under in Vitro and Cellular System

  • So, Mi-Jung;Kim, Boh-Kyung;Choi, Mi-Jin;Park, Kun-Young;Rhee, Sook-Hee;Cho, Eun-Ju
    • Preventive Nutrition and Food Science
    • /
    • 제12권4호
    • /
    • pp.191-196
    • /
    • 2007
  • We investigated radical scavenging effects and protective activities of fucoidan and alginic acid, active polysaccharide components from brown seaweeds, against peroxyl radical-induced oxidative stress under in vitro and cellular system. Fucoidan exerted strong radical scavenging effects against nitric oxide (NO) and superoxide anion $(O_2)$. On the other hand, alginic acid did not show inhibitory activity against NO and relatively weak $O_2{^-}$ scavenging effect. Additionally, alginic acid exhibited higher hydroxyl scavenging activity than fucoidan. Both fucoidan and alginic acid significantly enhanced cell viability against oxidative stress induced by 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH). At $1000{\mu}g/mL$ concentration of fucoidan and alginic acid, the viability was increased from 16.4% to 85.9% and 67.7%, respectively. In addition, fucoidan and alginic acid ameliorated the lipid peroxidation in LLC-PK1 cell induced by AAPH in a dose-dependent manner. In particular, fucoidan showed stronger inhibitory effect than alginic acid in the cellular system. The present study suggests that fucoidan and alginic acid may be promising antioxidants against oxidative stress induced by free radicals.

Anthocyanins from Hibiscus syriacus L. Inhibit Oxidative Stress-mediated Apoptosis by Activating the Nrf2/HO-1 Signaling Pathway

  • Molagoda, Ilandarage Menu Neelaka;Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Lee, Kyoung Tae;Choi, Yung Hyun;Jayasooriya, Rajapaksha Gedara Prasad Tharanga;Kim, Gi-Young
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.91-91
    • /
    • 2019
  • Hibiscus syriacus L. is widely distributed throughout Eastern and Southern Asia and its root bark has been used as a traditional remedy. Recently, the extracts of H. syriacus L. exerts anti-cancerous, anti-microbial, and anti-inflammatory activities. However, the effect of anthocyanin-rich fraction of H. syriacus L. petals (PS) has not been studied under excessive oxidative stress. In this study, we evaluated the cellular protective effect of PS in HaCaT human skin keratinocytes under hydrogen peroxide ($H_2O_2$)-induced oxidative stress conditions. PS at below $400{\mu}g/ml$ did not show any cell death; however, over $800{\mu}g/ml$ of PS gradually increased cell death. PS at below $400{\mu}g/ml$ significantly inhibited $H_2O_2$-induced apoptosis in HaCaT cells concomitant with downregulation of Bax and upregulation of pro-PARP and p-Bcl-2. Additionally, PS remarkably reversed $H_2O_2$-induced excessive reactive oxygen species (ROS) production and apoptosis, and also significantly inhibited mitochondrial ROS production concomitant with suppression of $H_2O_2$-induced mitochondrial depolarization. $H_2O_2$-mediated ratio of Bax to Bcl-2, and caspase-3 activation were markedly abolished in the presence of PS. Moreover, the inhibition of HO-1 function using zinc protoporphyrin, an HO-1 inhibitor, significantly attenuated the cellular protective effects of PS against $H_2O_2$, indicating the significance of HO-1 in PS mediated cytoprotective effect, which was mediated by activating nuclear factor erythroid 2-related factor-2 (Nrf2). Taken together, our results suggest that cytoprotective effect of PS in HaCaT keratinocytes against oxidative stress-induced apoptosis is mediated by inhibiting cellular and mitochondrial ROS production, which is downregulated by activating Nrf2/HO-1 axis.

  • PDF

Synthesis of ginsenoside Rb1-imprinted magnetic polymer nanoparticles for the extraction and cellular delivery of therapeutic ginsenosides

  • Liu, Kai-Hsi;Lin, Hung-Yin;Thomas, James L.;Shih, Yuan-Pin;Yang, Zhuan-Yi;Chen, Jen-Tsung;Lee, Mei-Hwa
    • Journal of Ginseng Research
    • /
    • 제46권5호
    • /
    • pp.621-627
    • /
    • 2022
  • Background: Panax ginseng (ginseng) is a traditional medicine that is reported to have cardioprotective effects; ginsenosides are the major bioactive compounds in the ginseng root. Methods: Magnetic molecularly imprinted polymer (MMIP) nanoparticles might be useful for both the extraction of the targeted (imprinted) molecules, and for the delivery of those molecules to cells. In this work, plant growth regulators were used to enhance the adventitious rooting of ginseng root callus; imprinted polymeric particles were synthesized for the extraction of ginsenoside Rb1 from root extracts, and then employed for subsequent particle-mediated delivery to cardiomyocytes to mitigate hypoxia/reoxygenation injury. Results: These synthesized composite nanoparticles were first characterized by their specific surface area, adsorption capacity, and magnetization, and then used for the extraction of ginsenoside Rb1 from a crude extract of ginseng roots. The ginsenoside-loaded MMIPs were then shown to have protective effects on mitochondrial membrane potential and cellular viability for H9c2 cells treated with CoCl2 to mimic hypoxia injury. The protective effect of the ginsenosides was assessed by staining with JC-1 dye to monitor the mitochondrial membrane potential. Conclusion: MMIPs can play a dual role in both the extraction and cellular delivery of therapeutic ginsenosides.

택사(澤瀉)가 유리지방산으로 유발된 HepG2 cell의 lipoapoptosis에 미치는 영향 (The Effect of Alisma orientale Extract on Free Fatty Acid-induced Lipoapoptosis in HepG2 Cells)

  • 김은영;이장훈
    • 대한한방내과학회지
    • /
    • 제35권2호
    • /
    • pp.184-194
    • /
    • 2014
  • Objectives : This study was designed to investigate the effect on lipoapoptosis of Alisma orientale extract against free fatty acid-induced cellular injury. Methods : HepG2 cells were used in an vitro model. HepG2 cells were treated with free fatty acids to generate a cellular model of nonalcoholic fatty liver disease (NAFLD). Using this cellular model, the anti-apoptotic effect and reducing steatosis of Alisma orientale extract against free fatty acid-induced cellular injury was evaluated by measuring steatosis and apoptosis. Results : Alisma orientale extract significantly attenuated free fatty acid-induced intracellular steatosis. Alisma orientale extract inhibited free fatty acid-mediated activation of pJNK, PUMA, BAX, caspase-3, and -9, and apoptotic kinases that are correlated with NAFLD. Alisma orientale extract also promoted Bcl-2, a anti-apoptotic protein. Conclusions : From the above, the Alisma orientale extract decreased the hepatocyte steatosis and showed the hepatocelluar protective effect by the regulation of apoptosis-related protein. It proposes the possibility of Alisma orientale extract to the treatment of nonalcoholic fatty liver disease in clinics.

OxyR Regulon Controls Lipid Peroxidation-mediated Oxidative Stress in Escherichia coli

  • Yoon, Seon-Joo;Park, Ji-Eun;Yang, Joon-Hyuck;Park, Jeen-Woo
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.297-301
    • /
    • 2002
  • Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. The oxyR gene product regulates the expression of enzymes and proteins that are needed for cellular protection against oxidative stress. Upon exposure to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the Escherichia coli oxyR overexpression mutant was much more resistant to lipid peroxidation-mediated cellular damage, when compared to the oxyR deletion mutant in regard to growth kinetics, viability, and DNA damage. The deletion of the oxyR gene in E. coli also resulted in increased susceptibility of superoxide dismutase to lipid peroxidation-mediated inactivation. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in free radical-induced cellular damage. Also, the oxyR regulon plays an important protective role in lipid peroxidation-mediated cellular damage.