• Title/Summary/Keyword: cellular manufacturing systems

Search Result 63, Processing Time 0.028 seconds

Integrated Process Planning with Scheduling System in Cellular Manufacturing

  • Leem, Choon-Woo;Kim, Young-Il;Kim, Wong-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.27-36
    • /
    • 1996
  • The objective of this paper is to outline an integrated cellular manufacturing system (ICMS) which integrates process planning and scheduling in the cellular manufacturing environment. It combines design systems with manufacturing systems in batch production. Furthermore, it is developed to overcome the difficulties that exist in the current manufacturing practices.

  • PDF

Determining Appropriate Production Conditions in Cellular Manufacturing Systems (셀생산(生産)의 효율적(效率的)인 운용(運用)을 위한 시뮤레이션 연구(硏究))

  • Song, Sang-Jae;Choi, Jung-Hee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.23-34
    • /
    • 1993
  • Although there are numerous studies that address the problem of optimal machine grouping and part family classification for cellular manufacturing, little research has been reported that studies the conditions where cellular manufacturing is appropriate. This paper, in order to evaluate and compare the job shop with the GT cellular shop, the performance of those shops were simulated by using SIMAN. We tested the effect of independent variables including changes of product demands, intercell flow level, group setup time, processing time variability, variety of material handling systems, and job properties (ratio of processing time and material handling time). And also performance measures (dependent variables), such as machine utilization, mean flow time, average waiting time, and throughput rate, are discussed. Job shop model and GT cellular shop written in SIMAN simulation language were used in this study. These systems have sixteen machines which are aggregated as five machine stations using the macro feature of SIMAN. The results of this research help to better understand the effect of production factors on the performance of cellular manufacturing systems and to identify some of the necessary conditions required to make these systems perform better than traditional job shops. Therefore, this research represents one more step towards the characterization of shops which may benefit from cellular manufacturing.

  • PDF

An integrated framwork for a cellular manufacturing system (셀 생산 시스템의 통합 구조)

  • 이노성;임춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.89-92
    • /
    • 1997
  • The objective of this paper is to provide an alternative framework for the integration of process planning and scheduling in cellular manufacturing. The concept of an integrated cellular manufacturing system is defined and the system architecture is presented. In an integrated cellular manufacturing system, there are three modules : the process planning module, the manufacturing-cell design module, and the cell-scheduling module. For each module, the tasks and their activities are explained.

  • PDF

A study on machine-cell formation in cellular manufacturing based on fuzzy set (퍼지집합에 기초한 셀 생산방식에서의 머신-셀 구성에 관한 연구)

  • Leam, Choon-Woo;Lee, Noh-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.305-310
    • /
    • 1997
  • In this paper, a fuzzy set based machine-cell formation algorithm for cellular manufacturing is presented. The fuzzy logic is emoloyed to express the degree of appropriateness when alternative machines are specified to process a part shape. For machine grouping, the similarity coefficient based approach is used. The algorithm produces efficient machine cells and part families which maximize the similarity values.

  • PDF

An Intergrated Framework for a Cellular Manufacturing System (셀 생산 시스템의 통합 구조)

  • 임춘우;이노성
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.219-228
    • /
    • 1997
  • The objective of this paper is to provide an alternative framework for the integration of process planning and scheduling in cellular manufacturing. The concept of an integrated cellular manufacturing system is defined and the system architecture is presented. In an integrated cellular manufacturing system, there are three modules : the process planning module, the manufacturing-cell design module, and the cell-scheduling module. For each module, the tasks and their activities are explained.

  • PDF

The Effects of Product, Process, and Facilities Characteristics on the Conversion Processes and Outcomes for Cellular Manufacturing : An Empirical Study

  • Choi, Moo-Jin;Jun, Minjoon
    • Korean Management Science Review
    • /
    • v.12 no.2
    • /
    • pp.165-188
    • /
    • 1995
  • The conversion processes from traditional job shops to cellular manufacturing systems can be viewed as an aggregation of cause-and-effect relationships among many strategic, managerial, and technical variables. Therefore, management needs to fully understand these interacting variables and possible relationships between the variables to successfully convert their plants to cellular manufacturing systems. The purpose of this study is to assist such management's needs in part. The objectives of this research are i) investigating contingency variables that may affect the conversion processes and outcomes to cellular manufacturing systems and ii) examining relationships between the variables and the conversion processes and outcomes. In this paper, particularly three categories of variables are examined: product, process routing, and process technology / facilities characteristics. Literature review and the mail survey method are used. The results are compared and synthesized with the findings of previous studies for useful discussions. Some previous arguments and propositions are empirically supported.

  • PDF

A Study on the Formation of Cellular Manufacturing Line for Construction JIT System's Basis (JIT 시스템 운용의 출발점 - Cellular 제조라인의 구축)

  • 구일섭;신현표
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.31
    • /
    • pp.43-48
    • /
    • 1994
  • In an effort to become more competitive and cost efficient many companies have shifted from traditional job-shop production to production using group technology (GT) and cell manufacturing (CM). Cellular manufacturing is critical to implementing Just-in-Time (JIT) production which pointed out in the previous articles. and adopt the U-shaped cell which allows for entry at one end of the U and exist at the other. This paper looks at the availability of cellular manufacturing, by applying those concepts to the small and medium sized industry.

  • PDF

Network-type Cell Layout in Cellular Flexible Assembly Systems (셀형유연조립시스템에서의 네트웍형 셀배치)

  • 노인규;최형호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.63-73
    • /
    • 1996
  • With the success of flexible manufacturing systems (FMSs), flexible assembly systems (FASs) have been developed to automate factories further. As in a cellular FMS, a cellular FAS is considered as the most flexible and feasible assembly system configuration Because of the differences between manufacturing and assembly operation, the logic of cell formation and cell layout between a FMS and a FAS is not the same. Since the time for assembly operation is usually relatively short, the transfer time is thus very crucial for the performance of assembly systems. Therefore in assembly systems it is important to reduce the transfer time by sequencing operations efficiently and arranging machines like the sequences. The network-type layout is not only feasible for the machine arrangement based on operation sequences, but it has also layout flexibility. Therefore it is a reasonable layout configuration for cellular FASs. This paper presents a method for the cell layout based on the network-type layout in a cellular FAS design.

  • PDF

Machine-Part Grouping in Cellular Manufacturing Systems Using a Self-Organizing Neural Networks and K-Means Algorithm (셀 생산방식에서 자기조직화 신경망과 K-Means 알고리즘을 이용한 기계-부품 그룹형성)

  • 이상섭;이종섭;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.137-146
    • /
    • 2000
  • One of the problems faced in implementing cellular manufacturing systems is machine-part group formation. This paper proposes machine-part grouping algorithms based on Self-Organizing Map(SOM) neural networks and K-Means algorithm in cellular manufacturing systems. Although the SOM spreads out input vectors to output vectors in the order of similarity, it does not always find the optimal solution. We rearrange the input vectors using SOM and determine the number of groups. In order to find the number of groups and grouping efficacy, we iterate K-Means algorithm changing k until we cannot obtain better solution. The results of using the proposed approach are compared to the best solutions reported in literature. The computational results show that the proposed approach provides a powerful means of solving the machine-part grouping problem. The proposed algorithm Is applied by simple calculation, so it can be for designer to change production constraints.

  • PDF

A Method of Component-Machine Cell Formation for Design of Cellular Manufacturing Systems (셀제조시스템 설계를 위한 부품-기계 셀의 형성기법)

  • Cho, Kyu-Kab;Lee, Byung-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.143-151
    • /
    • 1996
  • The concept of cellular manufacturing is to decompose a manufacturing system into subsystems, which are easier to manage than the entire manufacturing system. The objective of cellular manufacturing is to group parts with similar processing requirements into part families and machines into cells which meet the processing needs of part families assigned to them. This paper presents a methodology for cell formation based on genetic algorithm which produces improved cell formation in terms of total moves, which is a weighted sum of both intercell moves and intracell moves. A sample problem is solved for two, three and four cells with an approach based on genetic algorithms.

  • PDF