• 제목/요약/키워드: cellular differentiation

검색결과 775건 처리시간 0.034초

Effects of Exogenous Insulin-like Growth Factor 2 on Neural Differentiation of Parthenogenetic Murine Embryonic Stem Cells

  • Choi, Young-Ju;Park, Sang-Kyu;Kang, Ho-In;Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • 제36권1호
    • /
    • pp.33-37
    • /
    • 2012
  • Differential capacity of the parthenogenetic embryonic stem cells (PESCs) is still under controversy and the mechanisms of its neural induction are yet poorly understood. Here we demonstrated neural lineage induction of PESCs by addition of insulin-like growth factor-2 (Igf2), which is an important factor for embryo organ development and a paternally expressed imprinting gene. Murine PESCs were aggregated to embryoid bodies (EBs) by suspension culture under the leukemia inhibitory factor-free condition for 4 days. To test the effect of exogenous Igf2, 30 ng/ml of Igf2 was supplemented to EBs induction medium. Then neural induction was carried out with serum-free medium containing insulin, transferrin, selenium, and fibronectin complex (ITSFn) for 12 days. Normal murine embryonic stem cells derived from fertilized embryos (ESCs) were used as the control group. Neural potential of differentiated PESCs and ESCs were analyzed by immunofluorescent labeling and real-time PCR assay (Nestin, neural progenitor marker; Tuj1, neuronal cell marker; GFAP, glial cell marker). The differentiated cells from both ESC and PESC showed heterogeneous population of Nestin, Tuj1, and GFAP positive cells. In terms of the level of gene expression, PESC showed 4 times higher level of GFAP expression than ESCs. After exposure to Igf2, the expression level of GFAP decreased both in derivatives of PESCs and ESCs. Interestingly, the expression level of $Tuj1$ increased only in ESCs, not in PESCs. The results show that IGF2 is a positive effector for suppressing over-expressed glial differentiation during neural induction of PESCs and for promoting neuronal differentiation of ESCs, while exogenous Igf2 could not accelerate the neuronal differentiation of PESCs. Although exogenous Igf2 promotes neuronal differentiation of normal ESCs, expression of endogenous $Igf2$ may be critical for initiating neuronal differentiation of pluripotent stem cells. The findings may contribute to understanding of the relationship between imprinting mechanism and neural differentiation and its application to neural tissue repair in the future.

PKCβ Positively Regulates RANKL-Induced Osteoclastogenesis by Inactivating GSK-3β

  • Shin, Jihye;Jang, Hyunduk;Lin, Jingjing;Lee, Soo Young
    • Molecules and Cells
    • /
    • 제37권10호
    • /
    • pp.747-752
    • /
    • 2014
  • Protein kinase C (PKC) family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. However, the role of PKC in receptor activator of NF-${\kappa}B$ ligand (RANKL) signaling has remained elusive. We now demonstrate that $PKC{\beta}$ acts as a positive regulator which inactivates glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and promotes NFATc1 induction during RANKL-induced osteoclastogenesis. Among PKCs, $PKC{\beta}$ expression is increased by RANKL. Pharmacological inhibition of $PKC{\beta}$ decreased the formation of osteoclasts which was caused by the inhibition of NFATc1 induction. Importantly, the phosphorylation of GSK-$3{\beta}$ was decreased by $PKC{\beta}$ inhibition. Likewise, down-regulation of $PKC{\beta}$ by RNA interference suppressed osteoclast differentiation, NFATc1 induction, and GSK-$3{\beta}$ phosphorylation. The administration of PKC inhibitor to the RANKL-injected mouse calvaria efficiently protected RANKL-induced bone destruction. Thus, the $PKC{\beta}$ pathway, leading to GSK-$3{\beta}$ inactivation and NFATc1 induction, has a key role in the differentiation of osteoclasts. Our results also provide a further rationale for $PKC{\beta}$'s therapeutic targeting to treat inflammation-related bone diseases.

The role of autophagy in the placenta as a regulator of cell death

  • Gong, Jin-Sung;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제41권3호
    • /
    • pp.97-107
    • /
    • 2014
  • The placenta is a temporary fetomaternal organ capable of supporting fetal growth and development during pregnancy. In particular, abnormal development and dysfunction of the placenta due to cha nges in the proliferation, differentiation, cell death, and invasion of trophoblasts induce several gynecological diseases as well as abnormal fetal development. Autophagy is a catalytic process that maintains cellular structures by recycling building blocks derived from damaged microorganelles or proteins resulting from digestion in lysosomes. Additionally, autophagy is necessary to maintain homeostasis during cellular growth, development, and differentiation, and to protect cells from nutritional deficiencies or factors related to metabolism inhibition. Induced autophagy by various environmental factors has a dual role: it facilitates cellular survival in normal conditions, but the cascade of cellular death is accelerated by over-activated autophagy. Therefore, cellular death by autophagy has been known as programmed cell death type II. Autophagy causes or inhibits cellular death via the other mechanism, apoptosis, which is programmed cell death type I. Recently, it has been reported that autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation, although the mechanisms are still unclear. In particular, abnormal autophagic mechanisms prevent trophoblast invasion and inhibit trophoblast functions. Therefore, the objectives of this review are to examine the characteristics and functions of autophagy and to investigate the role of autophagy in the placenta and the trophoblast as a regulator of cell death.

Alteration of Apoptosis during Differentiation in Human Dental Pulp-Derived Mesenchymal Stem Cell

  • Lee, Hyeon-Jeong;Park, Byung-Joon;Jeon, Ryoung-Hoon;Jang, Si-Jung;Son, Young-Bum;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • 한국동물생명공학회지
    • /
    • 제34권1호
    • /
    • pp.2-9
    • /
    • 2019
  • Because mesenchymal stem cells (MSCs) maintain distinct capacities with respect to self-renewal, differentiation ability and immunomodulatory function, they have been highly considered as the therapeutic agents for cell-based clinical application. Of particular, differentiation condition alters characteristics of MSCs, including cellular morphology, expression of gene/protein and cell surface molecule, immunological property and apoptosis. However, the previous results for differentiation-related apoptosis in MSCs have still remained controversial due to varied outcomes. Therefore, the present study aimed to disclose periodical alterations of pro- and anti-apoptosis in MSCs under differentiation inductions. The human dental pulp-derived MSCs (DP-MSCs) were differentiated into adipocytes and osteoblasts during early (1 week), middle (2 weeks) and late (3 weeks) stages, and were investigated on their apoptosis-related changes by Annexin V assay, qRT-PCR and western blotting. The ratio of apoptotic cell population was significantly (p < 0.05) elevated during the early to middle stages of differentiations but recovered up to the similar level of undifferentiated state at the late stage of differentiation. In the expression of mRNA and protein, whereas expressions of pro-apoptosis-related makers (BAX and BAK) were not altered in any kind and duration of differentiation inductions, anti-apoptosis marker (BCL2) was significantly (p < 0.05) elevated even at the early stage of differentiations. The recovery of apoptotic cell population at the late stage of differentiation is expected to be associated with the response by elevation of anti-apoptotic molecules. The present study may contribute on understanding for cellular mechanism in differentiation of MSCs and provide background data in clinical application of MSCs in the animal biotechnology to develop effective and safe therapeutic strategy.

Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells

  • Lee, Soyeon;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.81-86
    • /
    • 2022
  • Macrophages are a major cellular component of innate immunity and are mainly known to have phagocytic activity. In the tumor microenvironment (TME), they can be differentiated into tumor-associated macrophages (TAMs). As the most abundant immune cells in the TME, TAMs promote tumor progression by enhancing angiogenesis, suppressing T cells and increasing immunosuppressive cytokine production. N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene, whose expression is down-regulated in various cancers. However, the effect of NDRG2 on the differentiation of macrophages into TAMs in breast cancer remains elusive. In this study, we investigated the effect of NDRG2 expression in breast cancer cells on the differentiation of macrophages into TAMs. Compared to tumor cell-conditioned medium (TCCM) from 4T1-mock cells, TCCM from NDRG2-over-expressing 4T1 mouse breast cancer cells did not significantly change the morphology of RAW 264.7 cells. However, TCCM from 4T1-NDRG2 cells reduced the mRNA levels of TAM-related genes, including MR1, IL-10, ARG1 and iNOS, in RAW 264.7 cells. In addition, TCCM from 4T1-NDRG2 cells reduced the expression of TAM-related surface markers, such as CD206, in peritoneal macrophages (PEM). The mRNA expression of TAM-related genes, including IL-10, YM1, FIZZ1, MR1, ARG1 and iNOS, was also downregulated by TCCM from 4T1-NDRG2 cells. Remarkably, TCCM from 4T1-NDRG2 cells reduced the expression of PD-L1 and Fra-1 as well as the production of GM-CSF, IL-10 and ROS, leading to the attenuation of T cell-inhibitory activity of PEM. These data showed that compared with TCCM from 4T1-mock cells, TCCM from 4T1-NDRG2 cells suppressed the TAM differentiation and activation. Collectively, these results suggest that NDRG2 expression in breast cancer may reduce the differentiation of macrophages into TAMs in the TME.

Cyclic Mechanical Stretch Stimulates the Proliferation of C2C12 Myoblasts and Inhibits Their Differentiation via Prolonged Activation of p38 MAPK

  • Kook, Sung-Ho;Lee, Hyun-Jeong;Chung, Wan-Tae;Hwang, In-Ho;Lee, Seung-Ah;Kim, Beom-Soo;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.479-486
    • /
    • 2008
  • Mitogen-activated protein kinases (MAPKs) play an indispensable role in activation of the myogenic program, which is responsive to mechanical stimulation. Although there is accumulating evidence of mechanical force-mediated cellular responses, the role of MAPK in regulating the myogenic process in myoblasts exposed to cyclic stretch is unclear. Cyclic stretch induced the proliferation of C2C12 myoblasts and inhibited their differentiation into myotubes. In particular, it induced persistent phosphorylation of p38 kinase, and decreased the level of phosphorylation of extracellular-signal regulated kinase (ERK). Partial inhibition of p38 phosphorylation increased cellular levels of MyoD and p-ERK in stretched C2C12 cells, along with increased myotube formation. Treatment with $10{\mu}M$ PD98059 prevented myogenin expression in response to a low dose of SB203580 ($3{\mu}M$) in the stretched cells, suggesting that adequate ERK activation is also needed to allow the cells to differentiate into myotubes. These results suggest that cyclic stretch inhibits the myogenic differentiation of C2C12 cells by activating p38-mediated signaling and inhibiting ERK phosphorylation. We conclude that p38 kinase, not ERK, is the upstream signal transducer regulating cellular responses to mechanical stretch in skeletal muscle cells.

The Role of Stress Granules in the Neuronal Differentiation of Stem Cells

  • Jeong, Sin-Gu;Ohn, Takbum;Jang, Chul Ho;Vijayakumar, Karthikeyan;Cho, Gwang-Won
    • Molecules and Cells
    • /
    • 제43권10호
    • /
    • pp.848-855
    • /
    • 2020
  • Cells assemble stress granules (SGs) to protect their RNAs from exposure to harmful chemical reactions induced by environmental stress. These SGs release RNAs, which resume translation once the stress is relieved. During stem cell differentiation, gene expression is altered to allow cells to adopt various functional and morphological features necessary to differentiate. This process induces stress within a cell, and cells that cannot overcome this stress die. Here, we investigated the role of SGs in the progression of stem cell differentiation. SGs aggregated during the neuronal differentiation of human bone marrow-mesenchymal stem cells, and not in cell lines that could not undergo differentiation. SGs were observed between one and three hours post-induction; RNA translation was restrained at the same time. Immediately after disassembly of SGs, the expression of the neuronal marker neurofilament-M (NF-M) gradually increased. Assembled SGs that persisted in cells were exposed to salubrinal, which inhibited the dephosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), and in eIF2α/S51D mutant cells. When eIF2α/S51A mutant cells differentiated, SGs were not assembled. In all experiments, the disruption of SGs was accompanied by delayed NF-M expression and the number of neuronally differentiated cells was decreased. Decreased differentiation was accompanied by decreased cell viability, indicating the necessity of SGs for preventing cell death during neuronal differentiation. Collectively, these results demonstrate the essential role of SGs during the neuronal differentiation of stem cells.

Suppressive Effects of an Ishige okamurae extract on 3T3-L1 Preadipocyte Differentiation

  • Cha, Sun-Yeong;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권4호
    • /
    • pp.451-459
    • /
    • 2013
  • The biological activity of tissue specific stem cell is under the control of their specific microenvironment and the exogenous chemicals derived from digestive tract can be one of the constructing factors of that. It is suggested that the extract of brown algae Ishige okamurae has antioxidant-, apoptosis induction-, and antiinflammatory-effects. On the other hand, a few studies have shown that antioxidant assist inhibition of accumulation of fat. So we studied the effect of the extract of I. okamura on the cellular activity and differentiation of 3T3-L1 preadipocyte to adipose cell. The viability of cell was analyzed using 3-[4,5-dimethylthiazo-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Adipogenesis of 3T3-L1 cell was analyzed after induction in the induction medium containing the I. okamurae extract. The cellular activity was high compared with the vehicle and 0.05 mM caffeine in all groups of I. okamurae extract treated cells. The extract of I. okamura inhibited accumulation of lipids in 10 and $50{\mu}g/ml$. The expression of the marker genes for adipocyte differentiation coincided with cytochemical results. These results suggest that the extract of I. okamurae increases the cellular viability of adipose precursor cells. On the other hand, it suppresses the differentiation of preadipocyte to adipocyte and accumulation of lipids in concentration-dependent manners. It may be possible that the major component of the extract can be applied in the control of adipose tissuegenesis.

Changes in Profiles of Major Proteins in Encysting Acanthamoeba castellanii

  • Park, Joon-Tae;Jeong, Young-Eui;Ahn, Tae-In
    • Animal cells and systems
    • /
    • 제6권4호
    • /
    • pp.341-347
    • /
    • 2002
  • The life cycle of Acanthamoeba is comprised of two distinct stages, tropho-zoite and cyst. During periods of stress, trophozoites undergo cellular differentiation into cyst. In order to understand the cellular differentiation, ore followed changes in profiles of major proteins by 2D-PAGE and ubiqui-tinated proteins by immunoblotting with anti-ubiquitin (Ub) monoclonal antibody (mAb) as a probe. We observed 51 proteins present in trophozoite were lost with the encystment. We found that 43 proteins within 24 h, and 8 proteins in 96 h of encystment. Among them, 17 proteins were staine with anti-Ub mAb. In cysts, 16 proteins including 2 anti-Ub mAb-reactive proteins were newly synthesized. Four proteins were newly detected in 24 h-cyst and disappeared in 96 h-cyst, one protein was synthesized in 24-96 h-cyst and disappeared in 168 h-cyst, and 11 proteins appeared upon en-cystment and were present in all cyst stages. We identified a cyst specific 33 kDa protein as subtilisin-like serine proteinase by N-terminal sequencing. Identification of these proteins lost and newly synthesized with encystment would improve our understanding of cysting protozoan parasites.

Morphogenetic and neuronal characterization of human neuroblastoma multicellular spheroids cultured under undifferentiated and all-trans-retinoic acid-differentiated conditions

  • Jung, Gwon-Soo;Lee, Kyeong-Min;Park, Jin-Kyu;Choi, Seong-Kyoon;Jeon, Won Bae
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.276-281
    • /
    • 2013
  • In this study, we aimed to compare the morphogenetic and neuronal characteristics between monolayer cells and spheroids. For this purpose, we established spheroid formation by growing SH-SY5Y cells on the hydrophobic surfaces of thermally-collapsed elastin-like polypeptide. After 4 days of culture, the relative proliferation of the cells within spheroids was approximately 92% of the values for monolayer cultures. As measured by quantitative assays for mRNA and protein expressions, the production of synaptophysin and neuronspecific enolase (NSE) as well as the contents of cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins are much higher in spheroids than in monolayer cells. Under the all-trans-retinoic acid (RA)-induced differentiation condition, spheroids extended neurites and further up-regulated the expression of synaptophysin, NSE, CAMs, and ECM proteins. Our data indicate that RA-differentiated SH-SY5Y neurospheroids are functionally matured neuronal architectures.