Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0220

PKCβ Positively Regulates RANKL-Induced Osteoclastogenesis by Inactivating GSK-3β  

Shin, Jihye (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
Jang, Hyunduk (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
Lin, Jingjing (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
Lee, Soo Young (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
Abstract
Protein kinase C (PKC) family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. However, the role of PKC in receptor activator of NF-${\kappa}B$ ligand (RANKL) signaling has remained elusive. We now demonstrate that $PKC{\beta}$ acts as a positive regulator which inactivates glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and promotes NFATc1 induction during RANKL-induced osteoclastogenesis. Among PKCs, $PKC{\beta}$ expression is increased by RANKL. Pharmacological inhibition of $PKC{\beta}$ decreased the formation of osteoclasts which was caused by the inhibition of NFATc1 induction. Importantly, the phosphorylation of GSK-$3{\beta}$ was decreased by $PKC{\beta}$ inhibition. Likewise, down-regulation of $PKC{\beta}$ by RNA interference suppressed osteoclast differentiation, NFATc1 induction, and GSK-$3{\beta}$ phosphorylation. The administration of PKC inhibitor to the RANKL-injected mouse calvaria efficiently protected RANKL-induced bone destruction. Thus, the $PKC{\beta}$ pathway, leading to GSK-$3{\beta}$ inactivation and NFATc1 induction, has a key role in the differentiation of osteoclasts. Our results also provide a further rationale for $PKC{\beta}$'s therapeutic targeting to treat inflammation-related bone diseases.
Keywords
glycogen synthase kinase-$3{\beta}$; osteoclast differentiation; protein kinase $C{\beta}$; receptor activator of NF-${\kappa}B$ ligand;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176.   DOI   ScienceOn
2 Lee, J., and Kim, M.S. (2007). The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res. Clin. Pract. 77 Suppl 1, S49-57.   DOI   ScienceOn
3 Moon, J.B., Kim, J.H., Kim, K., Youn, B.U., Ko, A., Lee, S.Y., and Kim, N. (2012). Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J. Immunol. 188, 163-169.   DOI   ScienceOn
4 Roffey, J., Rosse, C., Linch, M., Hibbert, A., McDonald, N.Q., and Parker, P.J. (2009). Protein kinase C intervention: the state of play. Curr. Opin. Cell Biol. 21, 268-279.   DOI   ScienceOn
5 Saito, N., Kikkawa, U., and Nishizuka, Y. (2002). The family of protein kinase C and membrane lipid mediators. J. Diabetes Complications 16, 4-8.   DOI   ScienceOn
6 Schiaffino, S., and Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4.   DOI
7 Steinberg, S.F. (2008). Structural basis of protein kinase C isoform function. Physiol. Rev. 88, 1341-1378.   DOI   ScienceOn
8 Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., et al. (2000). Tcell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600-605.   DOI   ScienceOn
9 Fang, X., Yu, S., Tanyi, J.L., Lu, Y., Woodgett, J.R., and Mills, G.B. (2002). Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid through a protein kinase Cdependent intracellular pathway. Mol. Cell. Biol. 22, 2099-2110.   DOI
10 Geraldes, P., and King, G.L. (2010). Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res.106, 1319-1331.   DOI   ScienceOn
11 Goode, N., Hughes, K., Woodgett, J.R., and Parker, P.J. (1992). Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J. Biol. Chem. 267, 16878-16882.
12 Jang, H.D., Shin, J.H., Park, D.R., Hong, J.H., Yoon, K., Ko, R., Ko, C.Y., Kim, H.S., Jeong, D., Kim, N., et al. (2011). Inactivation of glycogen synthase kinase-3beta is required for osteoclast differentiation. J. Biol. Chem. 286, 39043-39050.   DOI   ScienceOn
13 Jang, H.D., Noh, J.Y., Shin, J.H., Lin, J.J., and Lee, S.Y. (2013). PTEN regulation by the Akt/GSK-3beta axis during RANKL signaling. Bone 55, 126-131.   DOI   ScienceOn
14 Kawakami, T., Kawakami, Y., and Kitaura, J. (2002). Protein kinase C beta (PKC beta).: normal functions and diseases. J. Biochem. 132, 677-682.   DOI   ScienceOn
15 Kim, J.H., Kim, K., Youn, B.U., Jin, H.M., and Kim, N. (2010). MHC class II transactivator negatively regulates RANKL-mediated osteoclast differentiation by downregulating NFATc1 and OSCAR. Cell. Signal. 22, 1341-1349.   DOI   ScienceOn
16 Lee, S.W., Kwak, H.B., Chung, W.J., Cheong, H., Kim, H.H., and Lee, Z.H. (2003). Participation of protein kinase C beta in osteoclast differentiation and function. Bone 32, 217-227.   DOI   ScienceOn
17 Crabtree, G.R., and Olson, E.N. (2002). NFAT signaling: choreographing the social lives of cells. Cell 109, S67-79.   DOI   ScienceOn
18 Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E., Roux, E.R., Teepe, M.C., DuBose, R.F., Cosman, D., and Galibert, L. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179.   DOI   ScienceOn
19 Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342.   DOI   ScienceOn
20 Choi, H.K., Kang, H.R., Jung, E., Kim, T.E., Lin, J.J., and Lee, S.Y. (2013). Early estrogen-induced gene 1, a novel RANK signaling component, is essential for osteoclastogenesis. Cell Res. 23, 524-536.   DOI
21 Doble, B.W., and Woodgett, J.R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175-1186.   DOI   ScienceOn
22 Vilimek, D., and Duronio, V. (2006). Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB. Biochem. Cell Biol. 84, 20-29.   DOI   ScienceOn
23 Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205-2232.   DOI   ScienceOn
24 Wong, B.R., Rho, J., Arron, J., Robinson, E., Orlinick, J., Chao, M., Kalachikov, S., Cayani, E., Bartlett, F.S., 3rd, Frankel, W.N., et al. (1997). TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190-25194.   DOI   ScienceOn
25 Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597-3602.   DOI   ScienceOn
26 Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997). Role of 1 alpha,25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223-235.   DOI
27 Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., and Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357.   DOI
28 Takayanagi, H. (2007). Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304.   DOI   ScienceOn
29 Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2). integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901.   DOI   ScienceOn
30 Tan, S.L., and Parker, P.J. (2003). Emerging and diverse roles of protein kinase C in immune cell signalling. Biochem. J. 376, 545-552   DOI   ScienceOn
31 Wang, J., Wang, N., Xie, J., Walton, S.C., McKown, R.L., Raab, R.W., Ma, P., Beck, S.L., Coffman, G.L., Hussaini, I.M., et al. (2006a). Restricted epithelial proliferation by lacritin via PKCalphadependent NFAT and mTOR pathways. J. Cell Biol. 174, 689-700.   DOI   ScienceOn
32 Zhu, T., Tsuji, T., and Chen, C. (2010). Roles of PKC isoforms in the induction of apoptosis elicited by aberrant Ras. Oncogene 29, 1050-1061.   DOI   ScienceOn
33 Wang, Q., Zhou, Y., and Evers, B.M. (2006b). Neurotensin phosphorylates GSK-3alpha/beta through the activation of PKC in human colon cancer cells. Neoplasia 8, 781-787.   DOI
34 Kobayashi, N., Kadono, Y., Naito, A., Matsumoto, K., Yamamoto, T., Tanaka, S., and Inoue, J. (2001). Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271-1280.   DOI   ScienceOn
35 Kim, H., Choi, H.K., Shin, J.H., Kim, K.H., Huh, J.Y., Lee, S.A., Ko, C.Y., Kim, H.S., Shin, H.I., Lee, H.J., et al. (2009). Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J. Clin. Invest. 119, 813-825.   DOI   ScienceOn