• 제목/요약/키워드: cellular antioxidant activity

Search Result 381, Processing Time 0.039 seconds

In vitro and Cellular Antioxidant Activity of Arginyl-fructose and Arginyl-fructosyl-glucose

  • Lee, Jung-Sook;Kim, Gyo-Nam;Lee, Sang-Hyun;Kim, Eui-Su;Ha, Kyoung-Soo;Kwon, Young-In;Jeong, Heon-Sang;Jang, Hae-Dong
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1505-1510
    • /
    • 2009
  • Arginyl-fructose (AF) and arginyl-fructosyl-glucose (AFG) were chemically synthesized and purified. Their in vitro and cellular antioxidant activity was investigated using oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity assay, respectively. The peroxyl radical scavenging activity of AF was much higher than that of AFG, which was in good agreement with their reduction capacity to donate electrons or hydrogen atoms. On the other hand, the hydroxyl radical scavenging activity of AF was weaker than that of AFG, which was consistent with their metal chelating activity, suggesting that AFG-$Cu^{2+}$ complex may be less redox-active than AF-$Cu^{2+}$ complex due to 1 glucose molecule attached. The cellular antioxidant activity of AF and AFG appeared to depend on both their permeability into cell membrane and the scavenging activity on peroxyl or hydroxyl radicals. These results indicate that AF and AFG, Maillard reaction products, may have a high potential as a material for the development of nutraceutical food with antioxidant activity.

In Vitro and Cellular Antioxidant Activity of a Water Extract of Saururus chinensis

  • Kim, Gyo-Nam;Lee, Jung-Sook;Jang, Hae-Dong
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1332-1336
    • /
    • 2008
  • The water extract of Saururus chinensis was investigated for oxygen radical absorbance capacity (ORAC), reducing capacity, metal chelating activity, and intracellular antioxidant activity using HepG2 cell. When 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) was used for the generation of peroxyl radicals in vitro, S. chinensis extract (SC-E) showed the strong and concentration-dependent scavenging activity through donating protons which could be explained by its reducing property. When hydroxyl radicals were generated in vitro through the addition of $Cu^{2+}$ and $H_2O_2$, SC-E demonstrated the antioxidant activity depending on its concentration. In HepG2 cell model, most of intracellular oxidative stress generated by AAPH was efficiently removed by SC-E. However, when $Cu^{2+}$ without $H_2O_2$ was used as an oxidant in the intracellular assay, SC-E partially reduced the oxidative stress caused by $Cu^{2+}$ in cellular antioxidant activity assay system. These results indicate that SC-E could be utilized for the development of functional foods as antioxidant resource in the near future.

In Vivo/In Vitro Properties of Novel Antioxidant Peptide from Pinctada fucata

  • Ma, Yongkai;Huang, Kehui;Wu, Yanyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.33-42
    • /
    • 2021
  • Due to the potential of antioxidants to scavenge free radicals in human body, it is important to be able to prepare antioxidant peptides that meet the industrial requirements for cosmetics and food. Here, we determined in vivo/in vitro activities of antioxidant peptide from P. fucata (PFAOP) prepared by bio-fermentation method. The antioxidant property test results showed the DPPH, hydroxyl, superoxide radical-scavenging, and cellular antioxidant activity. EC50 values of PFAOPs were 0.018 ± 0.005, 0.126 ± 0.008, 0.168 ± 0.005, and 0.105 ± 0.005 mg/ml, respectively, exhibiting higher antioxidant activities than glutathione (p < 0.05). Moreover, anti-proliferation and cytotoxicity activity results illustrated PFAOP has a potent anti-proliferative activity against HepG2, Caco-2, and MCF-7 carcinoma cells with no cytotoxicity. Moreover, the protocols we developed in this work demonstrated several excellent advantages in PFAOP preparation compared to enzymatic hydrolysis or chemical synthesis methods and provide a theoretical foundation for higher-value application of marine-derived functional peptides.

Effect of Genistein on Activity and Expression of Antioxidant Enzyme in Hamster ovary cells (Genistein이 햄스터 난소세포의 항산화효소활성과 발현에 미치는 영향)

  • Kim, Min-Hye;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • Reactive oxygen species (ROS) are produced in the metabolic process of oxygen in cells. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cells systemize the antioxidant enzymes to control the oxidative stress. Genistein is one of the isoflavonoids, and its role in controlling cellular oxidative stress is presently the active issue at question. In this study; we analyzed genistein-induced survival rates of the CHO-K1 cells, activities of antioxidant enzymes, ROS levels, and expression levels of antioxidant enzyme genes in order to investigate the effect of genistein on cellular ROS production and antioxidative systems in CHO-K1 cells. As results, the survival rate of cells was decreased as the dose of genistein increases (12.5${\sim}$200 ${\mu}$M). Genistein increased cellular ROS levels, while it reduced total SOD activities and the expression of CuZnSOD. In conclusion, we suggest that genistein may induce oxidative stress via down-regulation of SOD.

Alteration of mitochondrial DNA content modulates antioxidant enzyme expressions and oxidative stress in myoblasts

  • Min, Kyung-Ho;Lee, Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.519-528
    • /
    • 2019
  • Mitochondrial dysfunction is closely associated with reactive oxygen species (ROS) generation and oxidative stress in cells. On the other hand, modulation of the cellular antioxidant defense system by changes in the mitochondrial DNA (mtDNA) content is largely unknown. To determine the relationship between the cellular mtDNA content and defense system against oxidative stress, this study examined a set of myoblasts containing a depleted or reverted mtDNA content. A change in the cellular mtDNA content modulated the expression of antioxidant enzymes in myoblasts. In particular, the expression and activity of glutathione peroxidase (GPx) and catalase were inversely correlated with the mtDNA content in myoblasts. The depletion of mtDNA decreased both the reduced glutathione (GSH) and oxidized glutathione (GSSG) slightly, whereas the cellular redox status, as assessed by the GSH/GSSG ratio, was similar to that of the control. Interestingly, the steady-state level of the intracellular ROS, which depends on the reciprocal actions between ROS generation and detoxification, was reduced significantly and the lethality induced by $H_2O_2$ was alleviated by mtDNA depletion in myoblasts. Therefore, these results suggest that the ROS homeostasis and antioxidant enzymes are modulated by the cellular mtDNA content and that the increased expression and activity of GPx and catalase through the depletion of mtDNA are closely associated with an alleviation of the oxidative stress in myoblasts.

Evaluation of Different Methods of Antioxidant Measurement

  • Yoo, Kyung-Mi;Kim, Dae-Ok;Lee, Chang-Yong
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.177-182
    • /
    • 2007
  • The beneficial effects of fruits, vegetables, and beverages on human health have been attributed to their antioxidant activities. Therefore, antioxidant activity of food products is recognized as one of the important parameters in determining their functional values. Until now, antioxidant activity has been measured by various chemical and biological methods; however, many factors confound the reliability and reproducibility of measurements of antioxidant activity of food. In vitro methods may provide a useful indication of antioxidant activity but their results may not translate to the human biological system, while in vivo tests are difficult to carry out due to the intricate processes of uptake, cellular transportation, and metabolism of individual antioxidant components. Therefore, as long as these limitations exist, our best option is to measure the antioxidant activity in food directly. This review briefly summarizes currently available methods for the measurement of antioxidant activity in food and examines their respective validity.

High Light-Induced Changes in the Activities of Antioxidant Enzymes and the Accumulation of Astaxanthin in the Green Alga Haematococcus pluvialis

  • Park, Seul-Ki;Jin, Eon-Seon;Lee, Choul-Gyun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.300-306
    • /
    • 2008
  • We investigated high light-induced alterations in antioxidant enzymes by exposing green vegetative cells of the alga Haematococcus pluvialis to excess irradiance to induce the production of astaxanthin, a carotenoid pigment. Total activity of catalase decreased approximately 70% after high light exposure, whereas glutathione peroxidase (GPX) activity was slightly enhanced. Total activity of superoxide dismutase and ascorbate peroxidase (APX) also slightly decreased. Overall, we did not observe dramatically elevated levels of antioxidant isozymes, although APXn, GPX2, and GPX3 isozyme increased slightly. ${H_2}{O_2}$ content increased about sixfold after high light exposure, demonstrating severe cellular oxidative stress, whereas lipid peroxidation was notably reduced. Concomitantly, astaxanthin accumulation increased about sevenfold. This result suggests that probably massively accumulated astaxanthin may be one of the antioxidant protector against high light stress.

Antioxidant Effects of Noni (Morinda citrifolia) Extracts Treated with Hel and Trypsin (염산과 트립신으로 처리한 노니(Morinda citrifolia) 추출물의 항산화 효과)

  • Choi, Hye Young;Choi, Byung Chul;Sim, Sang Soo
    • YAKHAK HOEJI
    • /
    • v.49 no.5
    • /
    • pp.410-415
    • /
    • 2005
  • To investigate biological activity of noni extracts treated with HCl and trypsin, we measured the antioxidant activity through vitro assay and cellular system. Both water and lipid soluble fraction of noni extracts dose-dependently scav­enged DPPH radical. Superoxide scavenging activity of lipid soluble fraction after treating HCl and trypsin was significantly more potent than those of other fractions in NBT/xanthine oxidase assay, which suggests that antioxidant activity of noni extracts was increased by the treatment with HCl and trypsin. In antioxidant assay using RBL 2H3 cells, water soluble frac­tion of noni extracts had little effect on silica-induced reactive oxygen species generation, whereas lipid soluble fraction inhibited in a dose dependent manner. In non-treated noni extracts, effect of water soluble fraction on silica/$CuSO_4$-induced lipid peroxidation was more potent than that of lipid soluble fraction. However, the effects of noni extracts were reversed in noni extracts treated with HCl and trypsin. These data suggest that water soluble substances may be converted into lipid soluble substances by the treatment with HCl and trypsin. From the above results, it is suggested that lipid soluble fraction of noni extracts contain antioxidant used in vitro assay and RBL 2H3 cellular system. Such an effect of noni extracts may be increased by the treatment with HCl and trypsin.

Antioxidant Activity of Orange Flesh and Peel Extracted with Various Solvents

  • Park, Jae-Hee;Lee, Minhee;Park, Eunju
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.291-298
    • /
    • 2014
  • The aim of this study was to investigate the antioxidant activity of orange (Citrus auranthium) flesh (OF) and peel (OP) extracted with acetone, ethanol, and methanol. Antioxidant potential was examined by measuring total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA), total radical-trapping antioxidant potential (TRAP), oxygen radical absorbance capacity (ORAC), and cellular antioxidant activity (CAA). The comet assay was used to determine the protective effects of OF and OP against $H_2O_2$-induced DNA damage. TPC was highest in the acetone extracts of OF and OP. DPPH RSA was also higher in the acetone extracts than in the ethanol extracts. The DPPH RSA was highest in the acetone extracts of OF. The TRAP and ORAC values of the all extracts increased in a dose-dependent manner. In the TRAP assay, the acetone extracts of OF and OP had the lowest $IC_{50}$ values. In the CAA assay, the methanol and acetone extracts of OP had the lowest $IC_{50}$ values. All of the samples protected against $H_2O_2$-induced DNA damage in human leukocytes, as measured by the comet assay, but the acetone extracts of OP had the strongest effect. These results suggest that acetone is the best solvent for the extraction of antioxidant compounds from OF and OP. Furthermore, the high antioxidant activity of OP, which is a by-product of orange processing, suggests that it can be used in nutraceutical and functional foods.

Antioxidant Activity of Cercis chinensis and Its Protective Effect on Skin Aging

  • Na, Min-Kyun;Bae, Ki-Hwan;Hong, Nam-Doo;Yoo, Jae-Kuk;Nobuhiko Miwa
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.291-312
    • /
    • 2003
  • Reactive oxygen species are capable of damaging biomolecules such as lipids, proteins, and DNA, which can not only lead to various diseases, but also oxidative damage resulting aging. In our previous study, Cercis chinensis (Leguminosae) showed a potent antioxidant activity. Nineteen compounds were isolated through antioxidant activity-guided fractionation. The C. chinensis extract and some of the constituents exhibited a potent antioxidant activity on the free radicals and lipid peroxidation and a notable protective effect on the t-BuOOH induced oxidative damage. In vivo test of skin damage induced by UVB irradiation, the extract of C. chinensis and a constituent, piceatannol, exhibited a significant protective effect. The life-span of the HEK-N/F cells were extended by 1.21-2.12 fold as a result of the continuous administration of 3 $\mu\textrm{g}$/ml of the C. chinensis extract and the active constituents compared to that of the control. These observations were attributed to the inhibitory effect of the C. chinensis extract and its constituents on the age-dependent shortening of the telomere. Thus, C. chinensis was demonstrated to protect the skin cells against oxidative stress and inhibit thereby the cellular aging, followed by expectation as anti-aging cosmetic ingredient.

  • PDF