Browse > Article
http://dx.doi.org/10.4014/jmb.2006.06002

In Vivo/In Vitro Properties of Novel Antioxidant Peptide from Pinctada fucata  

Ma, Yongkai (South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences)
Huang, Kehui (Guangzhou Maritime University)
Wu, Yanyan (South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.1, 2021 , pp. 33-42 More about this Journal
Abstract
Due to the potential of antioxidants to scavenge free radicals in human body, it is important to be able to prepare antioxidant peptides that meet the industrial requirements for cosmetics and food. Here, we determined in vivo/in vitro activities of antioxidant peptide from P. fucata (PFAOP) prepared by bio-fermentation method. The antioxidant property test results showed the DPPH, hydroxyl, superoxide radical-scavenging, and cellular antioxidant activity. EC50 values of PFAOPs were 0.018 ± 0.005, 0.126 ± 0.008, 0.168 ± 0.005, and 0.105 ± 0.005 mg/ml, respectively, exhibiting higher antioxidant activities than glutathione (p < 0.05). Moreover, anti-proliferation and cytotoxicity activity results illustrated PFAOP has a potent anti-proliferative activity against HepG2, Caco-2, and MCF-7 carcinoma cells with no cytotoxicity. Moreover, the protocols we developed in this work demonstrated several excellent advantages in PFAOP preparation compared to enzymatic hydrolysis or chemical synthesis methods and provide a theoretical foundation for higher-value application of marine-derived functional peptides.
Keywords
P. fucata; antioxidant peptide; cellular antioxidant activity; anti-proliferation; molecular docking;
Citations & Related Records
연도 인용수 순위
  • Reference
1 You L, Zhao M, Regenstein JM, Ren J. 2010. Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Res. Int. 43: 1167-1173.   DOI
2 Zhu Y, Li T, Fu X, Abbasi AM, Zheng B, Liu RH. 2015. Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). J. Funct. Foods 19: 439-450.   DOI
3 Liu L, Wen W, Zhang R, Wei Z, Deng Y, Xiao J, et al. 2017. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran. Food Chem. 214: 1-8.   DOI
4 Liang R, Cheng S, Wang X. 2018. Secondary structure changes induced by pulsed electric field affect antioxidant activity of pentapeptides from pine nut (Pinus koraiensis) protein. Food Chem. 254: 170-184.   DOI
5 Wu Y, Tian Q, Li L, Khan MN, Yang X, Zhang Z, et al. 2013. Inhibitory effect of antioxidant peptides derived from Pinctada fucata protein on ultraviolet-induced photoaging in mice. J. Funct. Foods 5: 527-538.   DOI
6 Wu Y, Wang J, Li L, Yang X, Wang J, Hu X. 2017. Purification and identification of an antioxidant peptide from Pinctada fucata muscle. CyTA - J. Food 16: 11-19.   DOI
7 Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. 2017. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 7: 10480.   DOI
8 Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461.   DOI
9 Wang X, Nie Y, Xu Y. 2019. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. Bioresour. Technol. 278: 360-371.   DOI
10 Wu YY, Li LH, Duan ZH, Yang XQ, Shang J, Chen SJ. 2011. Application of response surface methodology to optimise preparation high antioxidant activity product from Pinctada fucata muscle. Adv. Mater. Res. 396-398: 1341-1348.   DOI
11 Garcia-Gimenez JL, Roma-Mateo C, Perez-Machado G, Peiro-Chova L, Pallardo, FV. 2017. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Rasic. Biol. Med. 112: 36-48.
12 Miceli V, Pampalone M, Frazziano G, Grasso G, Rizzarelli E. Ricordi C, et al. 2018. Carnosine protects pancreatic beta cells and islets against oxidative stress damage. Mol. Cell. Endocrinol. 474: 105-118.   DOI
13 Sila A, Bougatef A. 2016. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. J. Funct. Foods 21: 10-26.   DOI
14 Ngo D-H, Qian Z-J, Ryu B, Park JW, Kim S-K. 2010. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. J. Funct. Foods 2: 107-117.   DOI
15 Ahn CB, Kim JG Je JY. 2014. Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chem. 147: 78-83.   DOI
16 Parret AH, Besir H, Meijers R. 2016. Critical reflections on synthetic gene design for recombinant protein expression. Curr. Opin. Struct. Biol. 38: 155-162.   DOI
17 Wang B, Li L, Chi CF, Ma JH, Luo HY, Xu YF. 2013. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chem. 138: 1713-1719.   DOI
18 Chi C-F, Wang B, Wang Y-M, Zhang B, Deng S-G. 2015. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J. Funct. Foods 12: 1-10.   DOI
19 Dagar VK, Adivitiya, Khasa YP. 2017. High-level expression and efficient refolding of therapeutically important recombinant human Interleukin-3 (hIL-3) in E. coli. Protenin Expr. Purif. 131: 51-59.   DOI
20 Xing L, Liu R, Gao X, Zheng J, Wang C, Zhou G, et al. 2018. The proteomics homology of antioxidant peptides extracted from drycured Xuanwei and Jinhua ham. Food Chem. 266: 420-426.   DOI
21 Wang H, Guo X, Hu X, Li T, Fu X, Liu RH. 2017. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 217: 773-781.   DOI
22 Guo R, Guo X, Li T, Fu X, Liu R. H.2017. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophae rhamnoides L.) berries. Food Chem. 221: 997-1003.   DOI
23 Chen C, Wang L, Wang R, Luo X, Li Y, Li J, et al. 2018. Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chem. 239: 260-267.   DOI
24 Zou TB, He TP, Li HB, Tang HW, Xia E. Q. 2016. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 21: 72.   DOI
25 Matsui R, Honda R, Kanome M, Hagiwara A, Matsuda Y, Togitani T, et al. 2018. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem. 245: 750-755.   DOI
26 Deng T, Ge H, He H, Liu Y, Zhai C, Feng, et al. 2017. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Exp. Purif. 140: 52-59.   DOI
27 Finkel T, Holbrook NJ. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247.   DOI
28 Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH. 2008. Cellular antioxidant activity of common fruits. J. Agric. Food Chem. 56: 8418-8426.   DOI
29 Halim NRA, Yusof HM, Sarbon NM. 2016, Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends Food Sci. Technol. 51: 24-33.   DOI
30 Aziz M, Karboune S. 2018. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: a review. Crit. Rev. Food Sci. Nut. 58: 486-511.
31 Lorenzo JM, Munekata PES, Gomez B, Barba FJ, Mora L, Perez-Santaescolastica, et al. 2018. Bioactive peptides as natural antioxidants in food products - a review. Trends Food Sci. Technol. 79: 136-147.   DOI
32 Ketnawa S, Benjakul S, Martinez-Alvarez O, Rawdkuen S. 2017. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability. Food Chem. 215: 383-390.   DOI
33 Gu L, Zhao M, Li W, You L, Wang J, Wang H, et al. 2012. Chemical and cellular antioxidant activity of two novel peptides designed based on glutathione structure. Food Chem Toxicol. 50: 4085-91.   DOI
34 You L, Li Y, Zhao H, Regenstein, J, Zhao M, Ren J. 2014. Purification and characterization of an antioxidant protein from pearl oyster (Pinctada fucata martensii). J. Aquat. Food Prod. 24: 661-671.
35 Agrawal H, Joshi R, Gupta M. 2016. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 204: 365-372.   DOI
36 Jang HL, Liceaga AM, Yoon KY. 2016. Purification, characterisation and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus) protein hydrolysates. J. Funct. Foods 20: 433-442.   DOI
37 Girgih AT, He R, Hasan FM, Udenigwe CC, Gill TA, Aluko R. E.2015. Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food Chem. 173: 652-659.   DOI
38 Ketnawa S, Martinez-Alvarez O, Benjakul S, Rawdkuen S. 2016. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion. Food Chem. 192: 34-42.   DOI