• Title/Summary/Keyword: cellobiose

Search Result 176, Processing Time 0.027 seconds

Exploration of β-Glucosidase Activity of Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리된 젖산균의 β-glucosidase 활성 탐색)

  • Jang, Mi-Hee;Kim, Myoung-Dong
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • The ${\beta}$-glucosidase (E.C. 3.2.1.21) production capabilities of lactic acid bacteria isolated from a variety of kimchi (fermented vegetables) were examined. When grown in a medium containing cellobiose as carbon source, most lactic acid bacteria showed significantly higher intracellular levels of ${\beta}$-glucosidase than the extracellular levels. A maximum intracellular ${\beta}$-glucosidase activity of 3.7${\pm}$0.5 (unit/mg protein) was obtained in the case of Weissella cibaria KFRI88010 isolated from kimchi. The optimum reaction conditions for W. cibaria KFRI88010 ${\beta}$-glucosidase activity were pH 5.0 and ${37^{\circ}C}$, and addition of divalent cations to the reaction mixture resulted in a notable decrease in enzyme activity. The ${\beta}$-glucosidase activity was enhanced twofold when W. cibaria KFRI88010 was grown in a medium containing fructose as compared with to a medium containing glucose or cellobiose.

Physiology of Rhizoctonia solani AG2-2(IV), Trichoderma harzianum, and Chaetomium cochliodes, and their Utilization of Thatch-related Carbohydrate in Zoysia japonica (Rhizoctonia solani AG2-2(IV), Trichoderma harzianum and Chaetomium cochliodes의 생육생리와 이들 미생물들의 한국잔디 대취층 관련 탄소원 이용도 조사)

  • 박진희;강시용;김희규
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.4
    • /
    • pp.211-220
    • /
    • 1998
  • Cellulose-degrading fungi were idenfied as Rhizoctonia solani AG2-2(IV), T. harzianum and C. cochliodes. Rhizoctonia solani AG2-2(IV) grows better in the acidified media of pH 4 and 5 than pH 6 and 7. Mycelial growth of T. harzianum and C. cochliodes was also higher in pH 4 and 5 than in pH 6 and 7. In order to relate the above findings to nutrient utilization, mycelial growth of R. solani AG2-2(IV) are evaluated with various carbon sources. R. solani AG2-2(IV) grows well in the order of mannose, cellobiose, glucose, xylose and arabinose. However, mycelial dry weights of T. harzianum were 98.7, 78.0, 72.3, 43.7 and 32.3mg in glucose, mannose, cellobiose, xylose, and arabinose, respectively. Mycelial dry weight of C. cochilodes was 118, 65, 57, 49, and 16mg in mannose, cellobiose, xylose, glucose, and arabinose, respectively. Result of cellulase assay of R. solani AG2-2(IV) and soil fungi was reffered as, R. solani AG2-2(IV) produced more cellulase on CMC substrate than on CEL and secretes more enzyme in floated condition than in water-immersed condition. T. harzianum secreted less amount of cellulase than R. solani AG2-2 and C. cochliodes. T. harzianum produced no enzyme on CEL under water-immersed condition. C. cochliodes produced similar amounts of cellulase on either CMC or CEL under both water-immersed and floated condition.

  • PDF

Studies on Molecular Improvement of Cellulose Utilizing Bacterial Strain -Molecular cloning of ${\beta}$-glucosidase gene of Cellulomonas sp. in E. coli- (纖維質 資化性菌의 分子育種에 관한 硏究 -Cellulomonas속균의 ${\beta}$-glucosidase gene의 E. coli에의 cloning -)

  • Bae, Moo;Lee, Jae-Moon
    • Korean Journal of Microbiology
    • /
    • v.22 no.3
    • /
    • pp.167-173
    • /
    • 1984
  • The cellabiase (${\beta}$-glucosidase) gene in a Cellulomonas sp. CS1-1 was cloned into E. coli HB101 using the vector plasmid pBR322, and the expression of the gene in E. coli studied. The chromosomal DNA of the cellulomonas was digested by seveal restriction enzymes, each of which has only one cleaving site in plasmid pBR322. The recombinant plasmid, pSB2, created with Sal I frament, was expressed for the cellobiase gene in E. coli. The recombiant plasmid was estimated to contain 6.4 Kb foreign DNA at the Sal I site of plasmid pBR322 and the inserted DNA was mapped by single and double digestion with several enzymes. E. coli HB101(pSB2) has slowly grown in a mineral liquid medium containing cellobiose as a sole carbon source. The cellobiase activity in the transformed E. coli was 132 units per liter, which is equivalent to one twenty fifth of that in doner strain Cellulomonas sp. CS1-1. The transforned cell with plasmid containing cellulase gene grow well in the LB mediuns. The synthesis of cellobiase in the strain, E. coli HB101 (pSB2), was inhibited by glucose and at high concentration of cellobiose, and induced by cellobiose at low concentration.

  • PDF

Comparison of Bioethanol Production by Candida molischiana and Saccharomyces cerevisiae from Glucose, Cellobiose, and Cellulose

  • Zheng, Jianning;Negi, Abhishek;Khomlaem, Chanin;Kim, Beom Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.905-912
    • /
    • 2019
  • Bioethanol has attracted much attention in recent decades as a sustainable and environmentally friendly alternative energy source. In this study, we compared the production of bioethanol by Candida molischiana and Saccharomyces cerevisiae at different initial concentrations of cellobiose and glucose. The results showed that C. molischiana can utilize both glucose and cellobiose, whereas S. cerevisiae can only utilize glucose. The ethanol yields were 43-51% from different initial concentrations of carbon source. In addition, different concentrations of microcrystalline cellulose (Avicel) were directly converted to ethanol by a combination of Trichoderma reesei and two yeasts. Cellulose was first hydrolyzed by a fully enzymatic saccharification process using T. reesei cellulases, and the reducing sugars and glucose produced during the process were further used as carbon source for bioethanol production by C. molischiana or S. cerevisiae. Sequential culture of T. reesei and two yeasts revealed that C. molischiana was more efficient for bioconversion of sugars to ethanol than S. cerevisiae. When 20 g/l Avicel was used as a carbon source, the maximum reducing sugar, glucose, and ethanol yields were 42%, 26%, and 20%, respectively. The maximum concentrations of reducing sugar, glucose, and ethanol were 10.9, 8.57, and 5.95 g/l, respectively, at 120 h by the combination of T. reesei and C. molischiana from 50 g/l Avicel.

Improvement of Cellobiose Dehydrogenase(CDH) and $\beta$-Glucosidase Activity by Phanerochaete chrysosporium Mutant (Phanerochaete chrysosporium 변이주에서의 Cellobiose Dehydrogenase(CDH)와 $\beta$-Glucosidase 활성 향상)

  • Kim, Eun-Ji;Kang, Seong-Woo;Song, Kwang-Ho;Han, Sung-Ok;Kim, Jae-Jin;Kim, Seung-Wook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.101-104
    • /
    • 2011
  • Cellobiose dehydrogenase(CDH) as a hemoflavoenzyme is secreted out of cell in the cellulose degradation. As CDH strongly bound to amorphous cellulose, it helps cellulose hydrolysis by cellulase. CDH may have an important role of saccharification process for bioethanol production. In this study, Phanerochaete chrysosporium ATCC 32629 was selected for the production of CDH among other strains tested. The optimal temperature and pH of CDH produced by P. chrysosporium ATCC 32629 were ${55^{\circ}C}$ and 4, respectively. To improve the activity of CDH, the mutation of P. chrysosporium was performed using proton beam that has high energy level partially. As a result, P. chrysosporium mutant with the high activity was selected at 1.2 kGy in a range of 99.9% lethal rate. The CDH and $\beta$-glucosidase activities of mutant were 1.4 fold and 20 fold higher than those of wild strain. Therefore, P. chrysosporium mutant with the high activities of CDH and $\beta$-glucosidase was obtained from mutation by proton beam irradiation.

감귤류 변패의 원인균인 Penicillium sp.-L4가 생성하는 식물세포벽 분해효소의 작용양상

  • 김무성;최영길
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.115-120
    • /
    • 1997
  • Penicillium sp.-L4, a causative fungus of rot in citrus fruits, was isolated and its mode of hydrolytic enzyme production was investigated. Carboxymethylcellulase (CMCase), polygalacturonase(PGase), extra- & intra-cellular $\beta$-glucosidase and cellobiase were produced drastically by addition of substrates in minimal media. Production of the hydrolytic enzymes were induced efficiently by cellobiose and cellooligosaccharides which were the products of cellulose hydrolysis, but repressed by addition of mono-saccharide such as glucose, raffinose, galacturonic acid. The relative activity of p-nitrophenyl-$\beta$-D-glucopyranoside(PNPG) hydrolysis was higher than that of cellobiose hydrolysis in extracellular enzymes, and reverse is true in intracellular enzymes. Intact enzyme production of P. sp.-L4 on lemon peel lesion was sequential. $\beta$-Glucosidase and CMCase were produced first and followed by PGase. The enzyme productivities and pH in lesions were coincident with optimal pH of each enzyme activities.

  • PDF

Degradation of Lignin and Cellulose Model Compounds by Chlorine Dioxide

  • Yoon, Byung-Ho;Lee, Seon-Ho;Wang, Li-Jun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.1-7
    • /
    • 1999
  • In this paper, five lignin model compounds (vanilly alcohol, veratryl alcohol, veratryl methyl carbinol, biseugenol) and three cellulose model compounds (${\alpha}$-D-glucos, methyl-${\beta}$-D-glucopyra-noside, D-cellobiose) were used to study the degradation rates of lignin and cellulose with chlorine dioxide. Biseugenol, which has unsaturated structure on the side chain of aromatic ring, was found to react with chlorine dioxide very quickly and consume large amount of chlorine dioxide. Phenolic structures, represented by veratryl alcohol and apocynol, react with chlorine dioxide much faster than nonphenolic structures represented by veratryl alcohol and veratryl methyl carbinol. The degradations of cellulose models were generally very slight, the corder of reaction rate being ${\alpha}$-D-glucose > D-cellobiose > methyl-${\alpha}$-D-glucopyranoside.

  • PDF

Phosphorolytic Pathway in Cellulose Degradation

  • Kitaoka, Motomitsu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.179-182
    • /
    • 2001
  • Two intracellular enzymes, cellobiose phosphorylase (CBP) and cellodextrin phosphorylase (CDP) are involved in the phosphorolytic pathway in cellulose degradation. Those enzymes are considered to be useful in syntheses of oligosaccharides because the reactions are reversible. CBP from Cellvibrio gilvus and CDP from Clostridium thermocellum YM-4 were cloned and over-expressed in Escharichia coli. Both the enzyme reactions showed ordered bi bi mechanism. Acceptor specificity of CBP in the reverse reaction was determined. Several $\beta$-l,4-glucosyl disaccharides were synthesized by using the reaction. A new substrate inhibition pattern, competitive substrate inhibition, was also found in the reverse reaction of CBP Cellobiose was produced from sucrose at a high yield by a combined action of three enzymes including CBP

  • PDF

Immunological Studies on Mutation Process and Substrate Induction of Trichoderma viride Cellulase (Trichoderma viride Cellulase의 돌연변이 과정 및 기질유도의 면역학적 연구)

  • 오태광;권기석
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.248-252
    • /
    • 1991
  • - Mutation process and substrate induction of 7i-ichoderma viride cellobiohydrolase were investigated by immunological techniques. Since mutants of Trichodemza uiride such as QM9123, QM9414, TKO41 and MCG77 produced immunologically same cellobiohydrolase, it may be that the mutation be occurred in the reguratory gene rather than in the structural gene of cellobiohydrolase. a-Cellulose and Solka Floc were found to be the best inducer for the production of cellobiohydrolase in Trichodemza viride culture compared to low molecular weight inducer such as carboxylmethyl cellulose and cellobiose.

  • PDF