Browse > Article
http://dx.doi.org/10.4014/jmb.1904.04014

Comparison of Bioethanol Production by Candida molischiana and Saccharomyces cerevisiae from Glucose, Cellobiose, and Cellulose  

Zheng, Jianning (Department of Chemical Engineering, Chungbuk National University)
Negi, Abhishek (Department of Chemical Engineering, Chungbuk National University)
Khomlaem, Chanin (Department of Chemical Engineering, Chungbuk National University)
Kim, Beom Soo (Department of Chemical Engineering, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.6, 2019 , pp. 905-912 More about this Journal
Abstract
Bioethanol has attracted much attention in recent decades as a sustainable and environmentally friendly alternative energy source. In this study, we compared the production of bioethanol by Candida molischiana and Saccharomyces cerevisiae at different initial concentrations of cellobiose and glucose. The results showed that C. molischiana can utilize both glucose and cellobiose, whereas S. cerevisiae can only utilize glucose. The ethanol yields were 43-51% from different initial concentrations of carbon source. In addition, different concentrations of microcrystalline cellulose (Avicel) were directly converted to ethanol by a combination of Trichoderma reesei and two yeasts. Cellulose was first hydrolyzed by a fully enzymatic saccharification process using T. reesei cellulases, and the reducing sugars and glucose produced during the process were further used as carbon source for bioethanol production by C. molischiana or S. cerevisiae. Sequential culture of T. reesei and two yeasts revealed that C. molischiana was more efficient for bioconversion of sugars to ethanol than S. cerevisiae. When 20 g/l Avicel was used as a carbon source, the maximum reducing sugar, glucose, and ethanol yields were 42%, 26%, and 20%, respectively. The maximum concentrations of reducing sugar, glucose, and ethanol were 10.9, 8.57, and 5.95 g/l, respectively, at 120 h by the combination of T. reesei and C. molischiana from 50 g/l Avicel.
Keywords
Bioethanol; Candida molischiana; Saccharomyces cerevisiae; Trichoderma reesei; Avicel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Peterson R, Nevalainen H. 2012. Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology 158: 58-68.   DOI
2 Rana V, Eckard AD, Teller P, Ahring BK. 2014. On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour. Technol. 154: 282-289.   DOI
3 Jager G, Wu Z, Garschhammer K, Engel P, Klement T, Rinaldi R, et al. 2010. Practical screening of purified cellobiohydrolases and endoglucanases with ${\alpha}$-cellulose and specification of hydrodynamics. Biotechnol. Biofuels 3: 18.   DOI
4 Peciulyte A, Anasontzis GE, Karlström K, Larsson PT, Olsson L. 2014. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet Biol. 72: 64-72.   DOI
5 Vance I, Topham CM, Blayden SL, Tampion J. 1980. Extracellular cellulase production by Sporocytophaga myxococcoides NCIB 8639. J. Gen. Microbiol. 117: 235-241.
6 Sawant SS, Tran TK, Salunke BK, Kim BS. 2017. Potential of Saccharophagus degradans for production of polyhydroxyalkanoates using cellulose. Process Biochem. 57: 50-56.   DOI
7 Gonde P, Blondin B, Leclerc M, Ratomahenina R, Arnaud A, Galzy P. 1984. Fermentation of cellodextrins by different yeast strains. Appl. Environ. Microbiol. 48: 265-269.   DOI
8 Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, et al. 2011. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. Environ. Microbiol. 77: 8288-8294.   DOI
9 Liu YK, Yang CA, Chen WC, Wei YH. 2012. Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy. J. Biosci. Bioeng. 114: 198-203.   DOI
10 Panagiotou G, Topakas E, Moukouli M, Christakopoulos P, Olsson L. 2011. Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw. Biomass Bioenerg. 35: 3727-3732.   DOI
11 Park EY, Naruse K, Kato T. 2012. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae. Biotechnol. Biofuels 5(1): 64.   DOI
12 Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M. 2017. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol. Biofuels 10: 73.   DOI
13 Maharjan A, Alkotaini B, Kim BS. 2018. Fusion o f carbohydrate binding modules to bifunctional cellulase to enhance binding affinity and cellulolytic activity. Biotechnol. Bioprocess Eng. 23: 79-85.   DOI
14 Fulton L, Howes T, Hardy J. 2004. Biofuels for transport: an international perspective. pp. 13. International Energy Agency, Paris, France.
15 REN21. Advancing the global renewable energy transition. Renewables 2018 global status report in perspective. 2018. Available online: http://www.ren21.net/wp-content/uploads/2018/06/GSR_2018_Highlights_final.pdf.
16 Kumar A, Kushal S, Saraf SA, Singh JS. 2018. Microbial biofuels: a solution to carbon emissions and energy crisis. Front. Biosci. (Landmrk Ed) 23: 1789-1802.   DOI
17 Olsson L, Hahn-Hagerdal B. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18: 312-331.   DOI
18 Sawant SS, Salunke BK, Tran TK, Kim BS. 2016. Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates. Korean J. Chem. Eng. 33: 1505-1513.   DOI
19 Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenerg. 47: 395-401.   DOI
20 Saini JK, Saini R, Tewari L. 2015. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 5:337-353.   DOI
21 Geiger MR, Gibbons WR West TP. 2014. A thermostable Candida molischiana mutant capable of ethanol production at elevated temperatures. J. Pure Appl. Microbiol. 8: 1743-1748.
22 Ortiz Muniz B, Carvajal Zarrabal O, Torrestiana Sanchez B, Aguilar Uscanga MG. 2010. Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses. J. Chem. Technol. Biotechnol. 85: 1361-1367.   DOI
23 Prasertwasu S, Khumsupan D, Komolwanich T, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S. 2014. Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion). Bioresour. Technol. 163: 152-159.   DOI
24 Freer SN. 1991. Fermentation and aerobic metabolism of cyclodextrins. Appl. Environ. Microbiol. 57: 655-659.   DOI
25 Olson DG, McBride JE, Joe Shaw A, Lynd LR. 2011. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23: 396-405.   DOI
26 Bhadana B, Chauhan M. 2016. Bioethanol production using Saccharomyces cerevisiae with different perspectives: Substrates, growth variables, inhibitor reduction and immobilization. Ferment. Technol. 5: 2.
27 Bu Y, Alkotaini B, Salunke BK, Deshmukh AR, Saha P, Kim BS. 2019. Direct ethanol production from cellulose by consortium of Trichoderma reesei and Candida molischiana. Green Process Synth. 8: 416-420.   DOI
28 Wen ZY, Wei L, Chen SL. 2004. Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour. Technol. 91: 31-39.   DOI