• 제목/요약/키워드: cell-specific gene regulation

검색결과 189건 처리시간 0.022초

Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

  • Ko, Je Yeong;Oh, Sumin;Yoo, Kyung Hyun
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.169-177
    • /
    • 2017
  • Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.

구강편평상피암종에서 DCC 유전자의 역할 (ROLE OF DCC(DELETED IN COLORECTAL CANCER) GENE IN ORAL SQUAMOUS CELL CARCINOMA)

  • 고성규;한세진;김경욱
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권5호
    • /
    • pp.518-524
    • /
    • 2008
  • Chromosome 18q alteration plays a key role in colorectal tumorigenesis, and loss of heterozygosity at 18q is associated with a poor prognosis in colon cancer. DCC(Deleted in Colorectal Cancer) is a putative tumor- suppressor gene at 18q21 that encodes a transmembrane protein with structural similarity to neural cell adhesion molecule that is involved in both epithelial and neuronal cell differentiation. DCC is implicated in regulation of cell growth, survival and proliferation. Thus, tumor progression in squamous cell carcinoma, stomach cancer, colorectal cancer correlates with downregulation of DCC expression. The mechanism for DCC suppression is associated with hypermethylation of the DCC gene promoter region. Hence, the goal of this study is to identify the promoter methylation responsible for the down-regulation of DCC expression in oral squamous cell carcinoma. 12 of tissue specimens for the study are excised and gathered from 12 patients who are diagnosed as SCC in department of OMS, dental hospital, dankook university. To find expression of DCC in each tissue samples, immunohistochemical staining, RT-PCR gene analysis and methylation specific PCR are processed. The results are as follows. 1. In the DCC gene RT-PCR analysis, 5(41.6%) of 12 specimens of oral squamous cell carcinoma did not expressed DCC gene. 2. In the promoter methylation specific PCR analysis, 5(41.6%) of 12 specimens showed promoter methylation of DCC gene. 3. In the immunohistochemical staining of poor differentiated and invasive oral squamous cell carcinoma, loss of DCC expression was observed. These findings suggest that methylation of the DCC gene may play a role in loss of gene expression in invasive oral squamous cell carcinoma.

Deciphering the molecular mechanisms of epitranscriptome regulation in cancer

  • Han, Seung Hun;Choe, Junho
    • BMB Reports
    • /
    • 제54권2호
    • /
    • pp.89-97
    • /
    • 2021
  • Post-transcriptional regulation is an indispensable cellular mechanism of gene expression control that dictates various cellular functions and cell fate decisions. Recently, various chemical RNA modifications, termed the "epitranscriptome," have been proposed to play crucial roles in the regulation of post-transcriptional gene expression. To date, more than 170 RNA modifications have been identified in almost all types of RNA. As with DNA modification-mediated control of gene expression, regulation of gene expression via RNA modification is also accomplished by three groups of proteins: writers, readers, and erasers. Several emerging studies have revealed that dysregulation in RNA modification is closely associated with tumorigenesis. Notably, the molecular outcomes of specific RNA modifications often have opposite cellular consequences. In this review, we highlight the current progress in the elucidation of the mechanisms of cancer development due to chemical modifications of various RNA species.

대두 저장단백질 유전자의 발현 조절 메카니즘 (Regulation Mechanism of Soybean Storage Protein Gene Expression)

  • 최양도;김정호
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.283-307
    • /
    • 1987
  • Glycinin and $\beta$-conglycinin are the most abundant storage protein in soybean. These proteins are known to be synthesized predominantly during germination and cell expansion phase of seed development for short period, and synthesized not in other tissues. Genes encoding these storage proteins are useful system to study the mechanism of development stage and tissue specific gene expression in eukaryotes, especially plants, at the molecular level. The cDNA and genomic clones coding for glycinin have been isolated and regulation mechanism of the gene expression has been studied. Initially, development and tissue-specific expression of the glycinin gene is regulated at the level of transcription. Post-transcriptional processing is also responsible for delayed accumulation of the mRNA. Translational control of the storage protein gene has not been reported. Post-translational modification is another strategic point to regulate the expression of the gene. It is possible to identify positive and/or negative reguratory clements in vivo by producing transgenic plants agter gene manipulation. Elucidation of activation and repression mechanism of soybean storage protein genes will contribute to the understanding of the other plant and eukaryotic genes at molecular level.

  • PDF

Plasticity of rice to water extremes: Farmers' genes to mechanisms

  • Bailey-Serres, Julia
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.5-5
    • /
    • 2017
  • Too little and too much water due to climatic events is a significant cause of global food insecurity. Crops are less productive under water-limited conditions and all major crops, with the exception of rice (Oryza sativa), die within a few days of complete submergence. To complement our studies on genes such as SUB1A, (an ERF-VII transcription factor that provides robust submergence tolerance) and AG1 (a TREHALOSE 6-P PHOSPHATASE that promotes establishment of young seedlings underwater), we have retooled INTACT (${\underline{I}}solation$ of ${\underline{N}}uclei$ ${\underline{TA}}gged$ in specific ${\underline{C}}ell$ ${\underline{T}}ypes$) and TRAP (${\underline{T}}ranslating$ ${\underline{R}}ibosome$ ${\underline{A}}ffinity$ ${\underline{P}}urification$) for rice. These technologies enable us to follow dynamics in chromatin, nuclear pre-mRNAs and ribosome-bound mRNAs in meristems and diverse cell types. With these technologies we can better interpret responses to stresses and reestablishment of homeostasis. These include stress acclimation strategies involving changes in metabolism and development, such as dynamics in suberin deposition in sub-epidermal layers of roots that limit water loss under drought and oxygen escape during waterlogging. Our new data uncover dynamic and reversible regulation at multiple levels of gene regulation and provide new insights into processes of stress resilience. Supported by US NSF-PGRP Plasticity (IOS-1238243), Secretome (IOS-1546879) and REU (DBI-146129) grants.

  • PDF

Analysis of H3K4me3-ChIP-Seq and RNA-Seq data to understand the putative role of miRNAs and their target genes in breast cancer cell lines

  • Kotipalli, Aneesh;Banerjee, Ruma;Kasibhatla, Sunitha Manjari;Joshi, Rajendra
    • Genomics & Informatics
    • /
    • 제19권2호
    • /
    • pp.17.1-17.13
    • /
    • 2021
  • Breast cancer is one of the leading causes of cancer in women all over the world and accounts for ~25% of newly observed cancers in women. Epigenetic modifications influence differential expression of genes through non-coding RNA and play a crucial role in cancer regulation. In the present study, epigenetic regulation of gene expression by in-silico analysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) has been carried out. Histone modification data of H3K4me3 from one normal-like and four breast cancer cell lines were used to predict miRNA expression at the promoter level. Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene targets. Five triple-negative breast cancer (TNBC)-specific miRNAs (miR153-1, miR4767, miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified based on the 3'-untranslated regions of downregulated mRNA genes that contain putative binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type and TNBC respectively, that have been reported to be associated with breast cancer regulation. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, and ZNF608) show similar relative expression profiles in large patient samples and other breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated gene regulation via the miRNA-mRNA axis.

Identification of Ku70/Ku80 as ADD1/SREBP1c Interacting Proteins

  • Lee, Yun Sok;Koh, Hae-Young;Park, Sang Dai;Kim, Jae Bum
    • Animal cells and systems
    • /
    • 제8권1호
    • /
    • pp.49-55
    • /
    • 2004
  • In vertebrates, multisubunit cofactors regulate gene expression through interacting with cell-type- and gene-specific DNA-binding proteins in a chromatin-selective manner. ADD1/SREBP1c regulates fatty acid metabolism and insulin-dependent gene expression through binding to SRE and E-box motif with dual DNA binding specificity. Although its transcriptional and post-translational regulation has been extensively studied, its regulation by interacting proteins is not well understood. To identify cellular proteins that associate with nuclear form of ADD1/SEBP1c, we employed the GST pull-down system with Hela cell nuclei extract. In this study, we demonstrated that Ku proteins interact specifically with ADD1/SREP1c protein. GST pull-down combined with peptide sequencing analysis revealed that Ku80 binds to ADD1/SREBP1c in vitro. Additionally, western blot analysis showed that Ku70, a heterodimerizing partner of Ku80, also associates with ADD1/SREBP1c. Furthermore, co-transfection of Ku70/Ku80 with ADD1/SREBP1c enhanced the transcriptional activity of ADD1/SREBP1c. Taken together, these results suggest that the Ku proteins might be involved in the lipogenic and/or adipogenic gene expression through interacting with ADD1/SREBP1c.

Involvement of Nitric Oxide in UVB-induced pigmentation

  • Horikoshi, Toshio;Sasaki, Minoru;Nakahara, Michio;Uchiwa, Hideyo;Miyachi, Yoshiki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.205-208
    • /
    • 2002
  • Nitric oxide (NO) is a newly described transmitter involved with cell to cell communication that is generated in biologic tissues by specific types of nitric oxide synthase (NOS), which metabolize L-arginine and molecular oxygen to citrulline and nitric oxide. In the skin. NO has been reported to play an important role in such diseases as psoriasis, atopic dermatitis, and contact dermatitis, as well as act as an important modulator in UVB-induced erythema. Ultraviolet B irradiation to the skin evokes an increase in NO production in the epidermis through two pathways; induction of inducible NOS, mediated by inflammatory cytokines, and elevation of constitutive neuronal NOS activity. In a cell culture system, it has been demonstrated that NO functions as a melanogen after being produced in keratinocytes in response to UVB-irradiation. NO-stimulated melanogenesis in melanocytes is mediated by the cGMP/PKG pathway. In this study, up-regulation of tyrosinase gene expression by NO-stimulation and the involvement of NO in UVB-induced pigmentation were examined. In NO-induced melanogenesis, protein synthesis and tyrosinase activity increased along with an up-regulation of tyrosinase gene expression. In an animal model, UVB-induced pigmentation in skin was suppressed by sequential daily treatments with a specific inhibitor of NOS. Thus, NO plays an important role in UVB-induced pigmentation, where its function as a melanogen is considered to be one of the mechanisms. Together with its role in the development of erythema, NO contributes to the total protective response of skin against UVB-irradiation.

  • PDF

MicroRNA-26a Regulates RANKL-Induced Osteoclast Formation

  • Kim, Kabsun;Kim, Jung Ha;Kim, Inyoung;Lee, Jongwon;Seong, Semun;Park, Yong-Wook;Kim, Nacksung
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.75-80
    • /
    • 2015
  • Osteoclasts are unique cells responsible for the resorption of bone matrix. MicroRNAs (miRNAs) are involved in the regulation of a wide range of physiological processes. Here, we examined the role of miR-26a in RANKL-induced osteoclastogenesis. The expression of miR-26a was upregulated by RANKL at the late stage of osteoclastogenesis. Ectopic expression of an miR-26a mimic in osteoclast precursor cells attenuated osteoclast formation, actin-ring formation, and bone resorption by suppressing the expression of connective tissue growth factor/CCN family 2 (CTGF/CCN2), which can promote osteoclast formation via upregulation of dendritic cell-specific transmembrane protein (DC-STAMP). On the other hand, overexpression of miR-26a inhibitor enhanced RANKL-induced osteoclast formation and function as well as CTGF expression. In addition, the inhibitory effect of miR-26a on osteoclast formation and function was prevented by treatment with recombinant CTGF. Collectively, our results suggest that miR-26a modulates osteoclast formation and function through the regulation of CTGF.

miR-15b induced by platelet-derived growth factor signaling is required for vascular smooth muscle cell proliferation

  • Kim, Sunghwan;Kang, Hara
    • BMB Reports
    • /
    • 제46권11호
    • /
    • pp.550-554
    • /
    • 2013
  • The platelet-derived growth factor (PDGF) signaling pathway is essential for inducing a dedifferentiated state of vascular smooth muscle cells (VSMCs). Activation of PDGF inhibits smooth muscle cell (SMC)-specific gene expression and increases the rate of proliferation and migration, leading to dedifferentiation of VSMCs. Recently, microRNAs have been shown to play a critical role in the modulation of the VSMC phenotype in response to extracellular signals. However, little is known about microRNAs regulated by PDGF in VSMCs. Herein, we identify microRNA- 15b (miR-15b) as a mediator of VSMC phenotype regulation upon PDGF signaling. We demonstrate that miR-15b is induced by PDGF in pulmonary artery smooth muscle cells and is critical for PDGF-mediated repression of SMC-specific genes. In addition, we show that miR-15b promotes cell proliferation. These results indicate that PDGF signaling regulates SMC-specific gene expression and cell proliferation by modulating the expression of miR-15b to induce a dedifferentiated state in the VSMCs.