• 제목/요약/키워드: cell-cycle arrest

검색결과 711건 처리시간 0.023초

Cardiac Development and Cell Cycle

  • Koh, Keum-Nim;Lee, Seog-Jae;Lee, Ho-Keun;Ahn, Ji-Eun;Kim, Jae-Chol;Ha, Ki-Chan;Chae, Soo-Wan;Koh, Gau-Young
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1998년도 학술발표회
    • /
    • pp.13-13
    • /
    • 1998
  • The molecular mechanisms that arrest cardiomyocytes in the cell cycle during postnatal period remain largely unknown. The activity of CDKs control cell cycle progression, and this activity is regulated positively and negatively by association of CDKs with cyclins and cyelin dependent kinase inhibitors (CKIs) respectively.(omitted)

  • PDF

Apoptotic effect of $IP_6$ was not enhanced by co-treatment with myo-inositol in prostate carcinoma PC3 cells

  • Kim, Hyun-Jung;Jang, Yu-Mi;Kim, Harriet;Kwon, Young-Hye
    • Nutrition Research and Practice
    • /
    • 제1권3호
    • /
    • pp.195-199
    • /
    • 2007
  • Inositol hexaphosphate ($IP_6$) is a major constituent of most cereals, legumes, nuts, oil seeds and soybean. Previous studies reported the anticancer effect of $IP_6$ and suggested that co-treatment of $IP_6$ with inositol may enhance anticancer effect of $IP_6$. Although the anticancer effect of $IP_6$ has been intensively studied, the combinational effect of $IP_6$ and inositol and involved mechanisms are not well understood so far. In the present study, we investigated the effect of $IP_6$ and myo-inositol (MI) on cell cycle regulation and apoptosis using PC3 prostate cancer cell lines. When cell, were co-treated with $IP_6$ and MI, the extent of cell growth inhibition was significantly increased than that by $IP_6$ alone. To identify the effect of $IP_6$ and MI on apoptosis, the activity of caspase-3 was measured. The caspase-3 activity was significantly increased when cells were treated with either $IP_6$ alone or both $IP_6$ and MI, with no significant enhancement by co-treatment. To investigate the effect of $IP_6$ and MI of cell cycle arrest, we measured p21 mRNA expression in PC3 cells and observed significant increase in p21 mRNA by $IP_6$. But synergistic regulation by co-treatment with $IP_6$ and MI was not observed. In addition, there was no significant effect by co-treatment compared to $IP_6$ treatment on the regulation of cell cycle progression although $IP_6$ significantly changed cell cycle distribution in the presence of MI or not. Therefore, these findings support that $IP_6$ has anticancer function by induction of apoptosis and regulation of cell cycle. However, synergistic effect by MI on cell cycle regulation and apoptosis was not observed in PC3 prostate cancer cells.

Kaempferol Activates G2-Checkpoint of the Cell Cycle Resulting in G2-Arrest and Mitochondria-Dependent Apoptosis in Human Acute Leukemia Jurkat T Cells

  • Kim, Ki Yun;Jang, Won Young;Lee, Ji Young;Jun, Do Youn;Ko, Jee Youn;Yun, Young Ho;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.287-294
    • /
    • 2016
  • The effect of kaempferol (3,5,7,4-tetrahydroxyflavone), a flavonoid compound that was identified in barnyard millet (Echinochloa crus-galli var. frumentacea) grains, on G2-checkpoint and apoptotic pathways was investigated in human acute leukemia Jurkat T cell clones stably transfected with an empty vector (J/Neo) or a Bcl-xL expression vector (J/Bcl-xL). Exposure of J/Neo cells to kaempeferol caused cytotoxicity and activation of the ATM/ATR-Chk1/Chk2 pathway, activating the phosphorylation of p53 (Ser-15), inhibitory phosphorylation of Cdc25C (Ser-216), and inactivation of cyclin-dependent kinase 1 (Cdk1), with resultant G2-arrest of the cell cycle. Under these conditions, apoptotic events, including upregulation of Bak and PUMA levels, Bak activation, mitochondrial membrane potential (Δψm) loss, activation of caspase-9, -8, and -3, anti-poly (ADP-ribose) polymerase (PARP) cleavage, and accumulation of apoptotic sub-G1 cells, were induced without accompanying necrosis. However, these apoptotic events, except for upregulation of Bak and PUMA levels, were completely abrogated in J/Bcl-xL cells overexpressing Bcl-xL, suggesting that the G2-arrest and the Bcl-xL-sensitive mitochondrial apoptotic events were induced, in parallel, as downstream events of the DNA-damage-mediated G2-checkpoint activation. Together these results demonstrate that kaempferol-mediated antitumor activity toward Jurkat T cells was attributable to G2-checkpoint activation, which caused not only G2-arrest of the cell cycle but also activating phosphorylation of p53 (Ser-15) and subsequent induction of mitochondria-dependent apoptotic events, including Bak and PUMA upregulation, Bak activation, Δψm loss, and caspase cascade activation.

HepG2 인체간암세포의 세포주기조절인자 발현에 미치는 sulforaphane의 영향 (Modulation of Cell Cycle Regulators by Sulforaphane in Human Mepatocarcinoma HepG2 Cells)

  • 배송자;김기영;유영현;최병태;최영현
    • 생명과학회지
    • /
    • 제16권7호
    • /
    • pp.1235-1242
    • /
    • 2006
  • 브로콜리를 포함한 십자화과 식물에서 glucoraphanin의 가수분해를 통해 생성되는 isothiocyanate의 일종인 sulforaphane은 역학적 조사를 포함한 다양한 선행 연구에서 강력한 암예방 효과를 가지는 것으로 알려져 있다. 항암효과에 관한 최근 연구 결과에 따르면 sulforaphane은 다양한 인체암세포의 증식을 억제하고 apoptosis를 유발할 수 있는 것으로 알려지고 있으나, 정확한 분자생물학적 기전은 밝혀져 있지 않은 상태이다. 본 연구에서는 sulforaphane의 항암작용 기전을 조사하기 위하여 HepG2 인체간암세포의 증식에 미치는 sulforaphane의 영 향을 조사하였다. Sulforaphane의 처리에 의한 HepG2 세포의 증식억제 및 형태적 변형은 세포주기 G2/M arrest 및 apoptosis 유발과 밀접한 관련이 있음을 알 수 있었다. RT-PCR 및 Western blot 분석 결과, sulforaphane 처리에 의하여 cyclin A 및 cyclin B1, Cdc2의 발현이 단백질 수준에서 선택적으로 저하되었으며, 종양억제 유전자 p53 및 Cdk inhibitor p21의 발현은 전사 및 번역 수준에서 sulforaphane 처리 농도 의존적으로 증가되었다. Sulforaphane의 항암 기전을 규명하기 위해서는 더 많은 연구가 부가적으로 필요하겠지만, 본 연구의 결과들에 의하면 sulforaphane은 강력한 인체암세포의 증식 억제 및 항암작용이 있을 것을 시사하여 준다고 할 수 있다.

Brca1 결손 세포주에서 nocodazole 처리에 의한 spindle checkpoint 활성화 연구 (Impaired Spindle Checkpoint Response of Brca1-deficient Mouse Embryonic Fibroblasts (MEFs) to Nocodazole Treatment)

  • 김명애;김현주;윤진호
    • 생명과학회지
    • /
    • 제16권1호
    • /
    • pp.12-16
    • /
    • 2006
  • 항암유전자 Brca1의 변이는 유방암 및 난소암에 대한 감수성을 증가시키며, Brca1은 DNA손상신호후 세포주기 조절에 필수적인 역할을 한다. 연구결과, Brca1이 세포주기 S기와 G2/M 조절점에서 중요한 역할을 담당함이 밝혀졌다. 그러나, Brca1의 spindle checkpoint 관여여부는 알려져 있지 않다. 본 연구에서는 spindle checkpoint를 활성화시키는 nocodazole를 처리하여 야생형, $p53^{-/-}$ 그리고 $p53^{-/-}\;Brca1^{-/-}$ 세포주의 세포주기 변화를 조사하였다. 야생형과 $p53^{-/-}$ 세포주는 신속한 mitosis기 정지가 나타난 반면, $p53^{-/-}\;Brca1^{-/-}$ 세포주의 경우 모든 세포가 M기에서 정지하지 않았다. Double-thymidine block 기법에 의한 세포주기 동조화후 nocodazole 처리시에도 $p53^{-/-}\;Brca1^{-/-}$ 세포주에서는 일부세포가 M기 조절점을 통과하여 계속 G1기로 진행하였다. 형태학적 분석에서도 nocodazole 함유배지에서 계속 증식하는 세포형태가 관찰되었다. 이와 같은 결과들은 Brca1이 spindle checkpoint가 정상적으로 작동하는데 중요한 역할을 담당한다는 것을 의미하고 있다.

계혈등(鷄血藤)이 자궁근종세포(子宮筋腫細胞)의 증식억제(增殖抑制) 및 세포자멸사에 미치는 영향 (The Effect of Millettia Reticulatas on the Proliferation Inhibition of Human Uterine Leiomyoma Cell and Expression of Apoptosis)

  • 이화경;백승희;김동철
    • 대한한방부인과학회지
    • /
    • 제19권3호
    • /
    • pp.135-149
    • /
    • 2006
  • Purpose : This study was aimed to investigate the inhibitory effect of Millettia Reticulatas on the proliferation of human uterine leiomyoma cells and the expression of gene related the mechanism of cell apoptosis. Methods : We counted the number of death cells treated with indicated concentration of Millettia Reticulatas and investigated cell death rate by MTS assay. Furthermore, flow cytometry analyis and DNA fragmentation assay were used to dissect between necrosis and apoptosis. and then we observed the differential gene expression by western blot analysis. Results : 1) The inhibitory effect on the growth of uterine leiomyoma cell treated with Millettia Reticulatas was increased in a concentration proportional. 2) The result of flow cytometry analysis. subG1 phase arrest related3 cell apoptosis was investigated 23.49% in uterine leiomyoma cell treated Millettia Reticulatas and showed the fession of proportional concentration. 3) The gene expression of p27, p53, p21, p16 related cell cycle was increased according to increasing concentration but cyclin E was none exchanged. 4) The character of apoptosis, DNA fragmentation was significantly observed the fession of proportional concentration. 5) The expression of pro-caspase3 and PARP were decreased dependent on treatment concentration. Conclusion : This study showed that Millettia Reticulatas have the inhibitory effect on the proliferation of human uterine leiomyoma cell and the effect was related with apoptosis. The apoptotic mechanism was observed that the gene expression of p27, p53, p21, p16 related cell cycle was increased according to increasing treatment concentration, induced G1 phase arrest and finally cell death was occurred. The decreased expression of pro-caspase 3 and PARP were noted that apoptosis was related with caspase pathway.

  • PDF

Genetic Relationship between the SPT3 Gene and RAS/cAMP Pathway in Yeast Cell Cycle Control (Genetic relationship between the SPT3 gene and ARS/cAMP pathway in yeast cell cycle control)

  • Shin, Deug-Yong;Yun, Jean-Ho
    • Journal of Microbiology
    • /
    • 제34권2호
    • /
    • pp.158-165
    • /
    • 1996
  • The signal transduction pathways through the RAS gene product and adenyl cyclease play a critical role in regulation of the cell cycle in yeast, Saccharomyces cerevisiae. We examined the genetic relationship between the spt3 gene and ras/cAMP pathway. A mutation in the SPT3 gene suppressed cell cycle arrest at the G1 phase caused by either an inactivation of the RAS or CYR1 gene which encodes a yeast homologue of human ras proto-oncogene or adenyl cyclase, respectively. The phenotypes such as sporulation and heat shock resistancy, that resulted from a partial inactivation of the RAS or CYR1 genes, were also suppressed by the spt3 mutation. Expression of the SSA1 gene encoding one of th heat shock proteins (Hsp70) can be induced by heat shock or nitrogen starvation. Expression of this gene is derepressed in cry1-2 and spt3 mutants. The bcy 1 mutation repressed by the bcy1 mutation, but not in spt3 mutants. These results suggest that the SPT gene is involved in expression of genes that are affected by the RAS/cAMP pathway.

  • PDF

GTP Induces S-phase Cell-cycle Arrest and Inhibits DNA Synthesis in K562 Cells But Not in Normal Human Peripheral Lymphocytes

  • Moosavi, Mohammad Amin;Yazdanparast, Razieh;Lotfi, Abbas
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.492-501
    • /
    • 2006
  • Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, we used guanosine 5'-triphosphate (GTP) to study its effects on K562 cell line. GTP, at concentrations between 25-200 ${\mu}M$, inhibited proliferation (3-90%) and induced 5-78% increase in benzidine-positive cells after 6-days of treatments of K562 cells. Flow cytometric analyses of glycophorine A (GPA) showed that GTP can induce expression of this marker in more mature erythroid cells in a time- and dose-dependent manner. These effects of GTP were also accompanied with inhibition of DNA synthesis (measured by [$^3H$]-thymidine incorporation) and early S-phase cell cycle arrest by 96 h of exposure. In contrast, no detectable effects were observed when GTP administered to unstimulated human peripheral blood lymphocytes (PBL). However, GTP induced an increase in proliferation, DNA synthesis and viability of mitogen-stimulated PBL cells. In addition, growth inhibition and differentiating effects of GTP were also induced by its corresponding nucleotides GDP, GMP and guanosine (Guo). In heat-inactivated medium, where rapid degradation of GTP via extracellular nucleotidases is slow, the anti-proliferative and differentiating effects of all type of guanine nucleotides (except Guo) were significantly decreased. Moreover, adenosine, as an inhibitor of Guo transporter system, markedly reduced the GTP effects in K562 cells, suggesting that the extracellulr degradation of GTP or its final conversion to Guo may account for the mechanism of GTP effects. This view is further supported by the fact that GTP and Guo are both capable of impeding the effects of mycophenolic acid. In conclusion, our data will hopefully have important impact on pharmaceutical evaluation of guanine nucleotides for leukemia treatments.

Inhibition of Overexpressed CDC-25.1 Phosphatase Activity by Flavone in Caenorhabditis elegans

  • Kim, Koo-Seul;Kawasaki, Ichiro;Chong, Youhoon;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • 제27권3호
    • /
    • pp.345-350
    • /
    • 2009
  • We previously reported that flavone induces embryonic lethality in Caenorhabditis elegans, which appeared to be the result of cell cycle arrest during early embryogenesis. To test this possibility, here we examined whether flavone inhibits the activity of a key cell cycle regulator, CDC-25.1 in C. elegans. A gain-of-function cdc-25.1 mutant, rr31, which exhibits extra cell divisions in intestinal cells, was used to test the inhibitory effects of flavone on CDC-25 activity. Flavone inhibited the extra cell divisions of intestinal cells in rr31, and modifications of flavone reduced the inhibitory effects. The inhibitory effects of flavone on CDC-25.1 were partly, if not completely, due to transcriptional repression.

8-Hydroxyguanine in DNA Mediates Cell Death of KG-1, a Human Leukemia Cell Line by Inducing Cell Cycle Arrest and Apoptosis

  • Hyun, Jin-Won
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.89-93
    • /
    • 2001
  • All that is presently known about the actions of 8-hydroxyguanine (8-oxoguanine; oh$^{8}$ Gua) in DNA is that it harms genetic integrity. This is even speculation based upon scattered in vitro experimental data such as the mismatch of oh$^{8}$ Gua with A in stead of C and the GC longrightarrow TA transversion observed in the DNA polymerase reaction using an oh$^{8}$ Gua containing oligonucleotide.(omitted)

  • PDF