• 제목/요약/키워드: cell-based simulation model

검색결과 277건 처리시간 0.028초

80lbf급 소형 가스터빈 엔진의 성능 시험장치 개발 (Development of the Performance Test Cell Using the Small Gas Turbine Engine of 80 lbf-Thrust)

  • 진학수;고성희;기자영;용승주;강명철;이은우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.495-498
    • /
    • 2010
  • 본 시험장치는 가스터빈엔진의 이론적 열역학 계산을 실제 성능시험을 통해 비교해보고 관련 교육기관, 연구소 등에 가스터빈 엔진의 작동 원리와 구조에 대한 기초지식을 제공하도록 개발되었다. 추력 80lbf급 마이크로 터보제트 엔진을 대상으로 하여 NI DAQ(데이터 수집)장치와 LabVIEW 프로그램을 이용하여 실시간 계측되는 데이터와 기준 엔진 성능 시뮬레이션 데이터를 비교 할 수 있는 프로그램을 개발하였다.

  • PDF

Dislocation dynamics simulation on stability of high dense dislocation structure interacting with coarsening defects

  • Yamada, M.;Hasebe, T.;Tomita, Y.;Onizawa, T.
    • Interaction and multiscale mechanics
    • /
    • 제1권4호
    • /
    • pp.437-448
    • /
    • 2008
  • This paper examined the stability of high-dense dislocation substructures (HDDSs) associated with martensite laths in High Cr steels supposed to be used for FBR, based on a series of dislocation dynamics (DD) simulations. The DD simulations considered interactions of dislocations with impurity atoms and precipitates which substantially stabilize the structure. For simulating the dissociation processes, a point defect model is developed and implemented into a discrete DD code. Wall structure composed of high dense dislocations with and without small precipitates were artificially constructed in a simulation cell, and the stability/instability conditions of the walls were systematically investigated in the light of experimentally observed coarsening behavior of the precipitates, i.e., stress dependency of the coarsening rate and the effect of external stress. The effect of stress-dependent coarsening of the precipitates together with application of external stress on the subsequent behavior of initially stabilized dislocation structures was examined.

자동화된 생산 시스템의 유연한 제어 구조의 모델링과 시뮬레이션 (Modeling and Simulation of Flexible Control Structures for Automated Manufacturing Systems)

  • 황희수;김헌기;우광방
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.439-443
    • /
    • 1987
  • This paper presents a method for constructing model of manufacturing processes for simulation and design of the discrete control logic. The models represent the discrete vent evolution of the system as well as features of the underlying continues processes, for applications such as discrete parts manufacture and assembly, the process is decomposed into operations and for each operation the required resources and associated discrete resource slates are Identified. The structure of the discrete-level control is modeled by modified Perti nets which are synthesized from single resource activity cycles. Construction of nets provides discrete control logic with guaranteed properties based on extended Petri nets theory, for illustration, the proposed method is applied to the high-level discrete control of a two-robotic assembly cell.

  • PDF

반사방지막 태양전지의 I-V특성에 대한 인공신경망 모델링 (I-V Modeling Based on Artificial Neural Network in Anti-Reflective Coated Solar Cells)

  • 홍다인;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.130-134
    • /
    • 2022
  • An anti-reflective coating is used to improve the performance of the solar cell. The anti-reflective coating changes the value of the short-circuit current about the thickness. However, the current-voltage characteristics about the anti-reflective coating are difficult to calculate without simulation tool. In this paper, a modeling technique to determine the short-circuit current value and the current-voltage characteristics in accordance with the thickness is proposed. In addition, artificial neural network is used to predict the short-circuit current with the dependence of temperature and thickness. Simulation results incorporating the artificial neural network model are obtained using MATLAB/Simulink and show the current-voltage characteristic according to the thickness of the anti-reflective coating.

Role of Stretch-Activated Channels in Stretch-Induced Changes of Electrical Activity in Rat Atrial Myocytes

  • Youm, Jae-Boum;Jo, Su-Hyun;Leem, Chae-Hun;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권1호
    • /
    • pp.33-41
    • /
    • 2004
  • We developed a cardiac cell model to explain the phenomenon of mechano-electric feedback (MEF), based on the experimental data with rat atrial myocytes. It incorporated the activity of ion channels, pumps, exchangers, and changes of intracellular ion concentration. Changes in membrane excitability and $Ca^{2+}$ transients could then be calculated. In the model, the major ion channels responsible for the stretch-induced changes in electrical activity were the stretch-activated channels (SACs). The relationship between the extent of stretch and activation of SACs was formulated based on the experimental findings. Then, the effects of mechanical stretch on the electrical activity were reproduced. The shape of the action potential (AP) was significantly changed by stretch in the model simulation. The duration was decreased at initial fast phase of repolarization (AP duration at 20% repolarization level from 3.7 to 2.5 ms) and increased at late slow phase of repolarization (AP duration at 90% repolarization level from 62 to 178 ms). The resting potential was depolarized from -75 to -61 mV. This mathematical model of SACs may quantitatively predict changes in cardiomyocytes by mechanical stretch.

Coverage and Energy Modeling of HetNet Under Base Station On-Off Model

  • Song, Sida;Chang, Yongyu;Wang, Xianling;Yang, Dacheng
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.450-459
    • /
    • 2015
  • Small cell networks, as an important evolution path for next-generation cellular networks, have drawn much attention. Different from the traditional base stations (BSs) always-on model, we proposed a BSs on-off model, where a new, simple expression for the probabilities of active BSs in a heterogeneous network is derived. This model is more suitable for application in practical networks. Based on this, we develop an analytical framework for the performance evaluation of small cell networks, adopting stochastic geometry theory. We derive the system coverage probability; average energy efficiency (AEE) and average uplink power consumption (AUPC) for different association strategies; maximum biased received power (MaBRP); and minimum association distance (MiAD). It is analytically shown that MaBRP is beneficial for coverage but will have some loss in energy saving. On the contrary, MiAD is not advocated from the point of coverage but is more energy efficient. The simulation results show that the use of range expansion in MaBRP helps to save energy but that this is not so in MiAD. Furthermore, we can achieve an optimal AEE by establishing an appropriate density of small cells.

에너지 효율적인 셀룰러 네트워크를 위한 플로킹 모델 기반 분산 송신전력제어 알고리즘 (Distributed Transmit Power Control Algorithm Based on Flocking Model for Energy-Efficient Cellular Networks)

  • 최현호
    • 한국정보통신학회논문지
    • /
    • 제20권10호
    • /
    • pp.1873-1880
    • /
    • 2016
  • 셀룰러 네트워크를 운용하는데 드는 에너지의 대부분은 기지국에 의해서 소비되므로 에너지 효율적인 셀룰러 네트워크를 위하여 기지국의 송신 전력을 줄이는 것이 필요하다. 본 논문에서는 셀룰러 네트워크의 에너지 효율을 향상시키기 위한 목적으로 플로킹(flocking) 모델에 기반한 분산 송신전력제어 알고리즘을 제안한다. 새 무리에서 각각의 새가 자신의 속도를 인접한 이웃 새들의 평균 속도로 맞춰 날아가는 것과 같이, 제안 방안에서는 각 셀의 단말의전송률이 인접 셀의 같은 채널을 사용하는 단말의 평균 전송률과 같도록 서빙 기지국의 송신 전력을 제어한다. 모의실험 결과 제안한 분산 송신전력제어 알고리즘은 플로킹 모델과 같은 수렴 속성을 가지며, 셀 간 간섭이 증가함에 따라 낮은 아웃티지 확률을 유지하면서도 기지국의 전력 소모를 효과적으로 줄일 수 있음을 보여준다. 이를 통하여 제안 방안은 기지국 수가 20개 이상일 때 셀룰러 네트워크의 에너지 효율을 기존 방식 대비 두 배 이상 향상시킨다.

단실형 마이크로 고체 산화물 연료전지의 작동특성 전산모사 (Performance Modeling of Single-Chamber Micro SOFC)

  • 차정화;정찬엽;정용재;김주선;이종호;이해원
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.854-859
    • /
    • 2005
  • Performance of micro scale intermediate temperature solid oxide fuel cell system has been successfully evaluated by computer simulation based on macro modeling. Two systems were studied in this work. The one is designed that the ceria-based electrolyte placed between composite electrodes and the other is designed that electrodes alternately placed on the electrolyte. The injected gas was composed of hydrogen and air. The polarization curve was obtained through a series of calculations for ohmic loss, activation loss and concentration loss. The calculation of each loss was based on the solving of mathematical model of multi physical-phenomena such as ion conduction, fluid dynamics and diffusion and convection by Finite Element Method (FEM). The performance characteristics of SOFC were quantitatively investigated for various structural parameters such as distance between electrodes and thickness of electrolyte.

트랜섬 선미를 가지는 선박의 선미선형 설계에 관한 기초적 연구 (A Preliminary Study about the Stern Hull Form Design of Ship with Transom Stern)

  • 이영길;김규석;강대선;정광열
    • 한국해양공학회지
    • /
    • 제20권3호
    • /
    • pp.88-95
    • /
    • 2006
  • The resistance characteristics of a trimaran are studied, varying the bottom profile and transom stern of the main hull. The bottom profile is varied in three cases (convex, flat, concave). Using the experimental and numerical methods, the resistance performance of each hull form is compared. The experiments are carried out in ship model basin, and the numerical simulations are performed by a finite-difference method, based on the Marker and Cell scheme. Euler and continuity equationsare used for the governing equations of the flaw field around a trimaran with transom stern. The agreement of both results is good. The optimal bottom profiles for transom stern are presented for law-speed and high-speed regions, respectively.

Study of Al-Alloy Foam Compressive Behavior Based on Instrumented Sharp Indentation Technology

  • Kim Am-Kee;Tunvir Kazi
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.819-827
    • /
    • 2006
  • The stress-strain relation of aluminum (Al) alloy foam cell wall was evaluated by the instrumented sharp indentation method. The indentation in a few micron ranges was performed on the cell wall of Al-alloy foam having a composition or Al-3wt.%Si-2wt.%Cu-2wt.%Mg as well as its precursor (material prior to foaming). To extract the stress-stram relation in terms of yield stress ${\sigma}_y$, strain hardening exponent n and elastic modulus E, the closed-form dimensionless relationships between load-indentation depth curve and elasto-plastic property were used. The tensile properties of precursor material of Al-alloy foam were also measured independently by uni-axial tensile test. In order to verify the validity of the extracted stress-strain relation, it was compared with the results of tensile test and finite element (FE) analysis. A modified cubic-spherical lattice model was proposed to analyze the compressive behavior of the Al-alloy foam. The material parameters extracted by the instrumented nanoindentation method allowed the model to predict the compressive behavior of the Al-alloy foam accurately.