• Title/Summary/Keyword: cell yield

Search Result 1,256, Processing Time 0.034 seconds

Effect of Magnesium Sulfate on Sisomicin Fermentation (Sisomicin 발효에 대한 Magnesium Sulfate의 영향)

  • 한상헌;신철수
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.213-218
    • /
    • 1992
  • Fermentation patterns were changed by adding magnesium sulfate to the fermentation broth and its effect on enhancement of sisomicin production was investigated. When cell growth was expressed by DNA content, trophophase and idiophase were separated, but not by dry cell weight. On the other hand, addition of magnesium sulfate had the antibiotic accumulated inside the cells be liberated into the outside, and this effect resulted in improving the final antibiotic yield. The maximum antibrotic yield was obtained when 100 mM magnesium sulfate was added after one day of cultivation, and enhanced more than three times compared to that of the control to which it was not added.

  • PDF

Effects of Milk Urea Nitrogen on Reproductive Performance in Dairy Cow

  • Lee, J. H.;J. T. Yoon;Park, E. J.;Lee, H. J.;Kim, C. K.;Y. C. Chung
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.59-59
    • /
    • 2001
  • This study was designed to assess effect of MUN concentration on reproduction performance and monitoring of feeding and fertility management in commercial dairy herd. The mean of milk yield is 26.48±8.38㎏ per day, milk fat 3.80±0.58%, protein 3.13±0.3% MUN 16.68±5.87㎎/㎖ and somatic cell 392,000±77,060㎖. Milk yield has been shown that negative correlation with fat, protein and somatic cell(P〈0.01). The finding of this study was significant relationship between non-pregnant days and MUN concentration. (omitted)

  • PDF

Flow behavior of high internal phase emulsions and preparation to microcellular foam

  • Lee, Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.153-160
    • /
    • 2004
  • Open microcellular foams having small-sized cell and good mechanical properties are desirable for many practical applications. As an effort to reduce the cell size, the microcellular foams combining viscosity improvers into the conventional formulation of styrene and water system were prepared via high internal phase emulsion polymerization. Since the material properties of foam are closely related to the solution properties of emulsion state before polymerization, the flow behavior of emulsions was investigated using a controlled stress rheometer. The yield stress and the storage modulus increased as viscosity improver concentration and agitation speed increased, due to the reduced cell size reflecting both a competition between the continuous phase viscosity and the viscosity ratio and an increase of shear force. Appreciable tendency was found between the rheological data of emulsions and the cell sizes of polymerized foams. Cell size reduction with the concentration of viscosity improver could be explained by the relation between capillary number and viscosity ratio. A correlative study for the cell size reduction with agitation speed was also attempted and the result was in a good accordance with the hydrodynamic theory.

Cell Counting Algorithm Using Radius Variation, Watershed and Distance Transform

  • Kim, Taehoon;Kim, Donggeun;Lee, Sangjoon
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.113-119
    • /
    • 2020
  • This study proposed the structure of the cluster's cell counting algorithm for cell analysis. The image required for cell count is taken under a microscope. At present, the cell counting algorithm is reported to have a problem of low accuracy of results due to uneven shape and size clusters. To solve these problems, the proposed algorithm has a feature of calculating the number of cells in a cluster by applying a radius change analysis to the existing distance conversion and watershed algorithm. Later, cell counting algorithms are expected to yield reliable results if applied to the required field.

Effects of Recombinant Baculovirus Infection Conditions on Production of Green Fluorescent Protein in Drosophila S2 Cells (초파리 S2 세포 시스템에서 녹색형광단백질 생산을 위한 재조합 배큘로바이러스의 감염조건들의 영향)

  • Cho, Hye Sook;Kim, Yeon Kyu;Kim, Kyoung Ro;Cha, Hyung Joon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • The baculovirus-insect Drosophila melanogaster S2 cell system combines advantages of conventional baculovirus system and non-lytic S2 cell system because baculoviruses can infect non-permissive cells such as mammalian and Drosophila S2 cells but cannot replicate themselves inside the cells. In the present work, we investigated effects of infection conditions on production of green fluorescent protein (GFP) as a target protein using this baculovirus-S2 cell system. Even though higher MOI and longer baculovirus contact time showed better GFP expression yield during the shorter period, overall protein yield could be lower during the longer period due to the relatively higher cell detachment and lysis (lower cell viability). In addition, maintaining high MOI will be not practical for large-scale cell culture. Therefore, instead of maintaining high MOI, we found that high initial cell number and concentrated (10X) baculovirus volume can confer comparable protein expression even under the moderate MOI condition. Also, we found that the post-infection time that is connected to state of cells after infection was an important factor for production yield.

해양 곰팡이 Thraustochytrium aureum의 형태학적 변화와 DHA 생산과의 특성 규명

  • Park, Gyeong-Won;Park, Cheon-Ik;Jo, Dae-Won;Heo, Byeong-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.273-276
    • /
    • 2000
  • Marine fungus, Thraustochytrium aureum ATCC 34034, was incubated in artificial sea water media in order to produce docosahexaenoic acid(DHA). Cultures were performed at $24^{\circ}C$ in light for 13 days with orbital shaker at 100rpm. Maximum cell productivity of 1.34g/L and DHA yield of 41.4 mg/L were obtained by using this method, which is almost the twice level of DHA yield obtained for the strains reported previously. This strain did produce much more DHA after sporangium disruption.

  • PDF

Production of Candida utilis Biomass on Chinese Cabbage Juice (배추즙액을 기질로 이용한 Candida utilis 균체의 생산)

  • Lee, Nam-Seok;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.221-225
    • /
    • 1992
  • The possibility of using Chinese cabbage juice as a substrate for the production of Candida utilis cell mass was explored. Dry cell weight production and cell yield coefficient were 1.35-1.45 g/100 ml undiluted juice and 47-50%, respectively, when C. utilis was grown by shake flask culture at $30^{\circ}C$ for 24 hr on more than three-fold diluted Chinese cabbage juice to make the final sugar content be equal to or less than 1.0%. Supplementation of glucose(2%), $KH_2PO_4(0.2%)$ and $(NH_4)_2SO_4(0.2%)$ to three-fold diluted Chinese cabbage juice did not enhance the dry cell weight yield or the protein content of the yeast cell, while supplementation of yeast extract(0.2%) and peptone(0.2%) increased dry cell weight production and protein content but not as much as the amount of each nutrient added. It was found that Chinese cabbage juice was an excellent substrate for the cultivation of C. utilis.

  • PDF

Synthesis of oleyl-4[131I]-iodobenzoate for long-term cell trafficking

  • Jeon, Hak Rim;Lee, Woonghee;Oh, Jieun;Lee, Yong Jin;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 2018
  • Great efforts are currently devoted to the development of new approaches for the labeling of cells using appropriate radionuclides. While fluoride-18 and copper-64 have been extensively studied as short-term and intermediate-term trafficking agents, iodide was studied less intensely. Here, we report a new cell labeling agent labeled with $^{131}I$, $[^{131}I]$oleyl-4-iodobenzoate ($[^{131}I]$OIB) for long-term cell trafficking. A precursor of $[^{131}I]$OIB was obtained in two steps, with the yield of 35%. The radiochemical yield of $[^{131}I]$OIB was over 50%. While $[^{131}I]$OIB could label different cells, L6 cells showed the highest cell-labeling efficiency. The $[^{131}I]$OIB-labeled L6 cells were imprinted into a rat heart, and then monitored noninvasively for 2 weeks by gamma camera imaging. We conclude that $[^{131}I]$OIB is a good candidate molecule for a long-term cell trafficking agent.

Marked effect of Cuscuta on puerarin accumulation in cell cultures of Pueraria tuberosa grown in shake flasks and a bioreactor

  • Goyal, Shaily;Sharma, Varsha;Ramawat, Kishan G.
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.121-126
    • /
    • 2011
  • Isoflavonoid production in cell cultures of Pueraria tuberosa as influenced by an angiospermic parasite, Cuscuta reflexa, was studied. During the time course, maximum isoflavonoid content was recorded when Cuscuta elicitor was added on day 15 of culture. Among various concentrations of elicitor tried, $1g\;l^{-1}$ of Cuscuta elicitor was found to be the most effective. The optimized elicitation conditions were used in vessels of varying capacity where maximum yield of ${\sim}91mg\;l^{-1}$ of isoflavonoid was recorded in a 2-l bioreactor which was about 19% higher than the control cultures. In this case, puerarin content increased up to $11mg\;l^{-1}$ which was 580% higher that the value recorded in the control cultures. In the bioreactor, 8 days of elicitation was optimal for the high accumulation of isoflavonoid, giving productivity of ${\sim}4mg\;l^{-1}\;day^{-1}$. The study showed persistent high isoflavonoid yield even during scale-up. Use of a preparation of Cuscuta reflexa as an elicitor is reported for the first time. The increase in isoflavonoid content was elicitor dose-dependent and can be explored to trigger high yields of isoflavonoid/secondary metabolites in production.

A New large-scale Pre-purification for Peroxidase from Plant Cell Cultures (식물세포 배양으로부터 Peroxidase 대량 정제를 위한 전처리 공정 개발)

  • 표상현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.342-345
    • /
    • 2000
  • A novel pre-purification method was developed for producing peroxidase to guarantee high purity and yield from plant cell cultures in large-scale process. This method was a simple and efficient procedure for the isolation and pre-purification of peroxidase from the biomass consisting of active clay treatment followed by cationic exchange chromatography. The use of active clay in the pre-purification process allows for rapid and efficient separation of peroxidase from interfering compounds and dramatically increases yield and purity of crude peroxidase for purification steps compared to alternative processes. This pre-purification process serves to minimize the buffer usage size and complexity of the HPLC operations for peroxidase purification. This process is readily scalable to a pilot plant and eventually to a production environment where mass production of material are expected to be produced.

  • PDF