• 제목/요약/키워드: cell wall thickness

검색결과 121건 처리시간 0.028초

셀 크기와 셀벽 두께를 고려한 하니컴 재료의 탄성 해석 (Elastic Analysis of Honeycomb Materials Considering Cell Size and Cell Wall Thickness)

  • 김형구;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.157-160
    • /
    • 2003
  • Honeycomb sandwich composite structures have been widely used in aircraft and military industry because of light weight and high stiffness. Accurate mechanical properties of honeycomb materials are needed for analysis of sandwich composites. In this study, theoretical formula for elastic modulus of honeycomb materials was established considering bending and axial deformations of their walls. Finite-element analysis results were compared with theoretical ones of the longitudinal and transverse moduli of honeycomb materials. Consequently, the mechanical properties of honeycomb materials could be analytically predicted.

  • PDF

Aspergillus nidulans 색소결핍 억제돌연변이주의 세포벽 미세구조 (Ultrastructure of Cell Wall in the Suppressor Mutant of Null Pigmentation (SU-NPG) of Aspergillus nidulans)

  • 정윤신
    • 생명과학회지
    • /
    • 제14권1호
    • /
    • pp.45-50
    • /
    • 2004
  • A. nidulans의 색소결핍 억제돌연변이주(Suppressor mutant of the null pigmentation; SU-NPG)의 세포벽 구조가 색소형성 및 균사분지에 미치는 영향을 조사하여 다음의 결과를 얻었다. SEM으로 세포 표면구조를 관찰한 결과, 완전배지에서 배양된 SU-NPG의 분생포자벽은 최외각 층이 6일 째부터 박리되었으며, 균사생장이 저조하였다 TEM으로 관찰한 결과, 균사 세포벽은 매우 두꺼워졌다. 이러한 전자현미경관찰 결과는 이들 돌연변이주의 세포벽 구조가 NPG 및 야생형의 그것과는 다르다는 것을 시사한다. 균사에 탄수화물 염색을 한 후, 세포화학적 미세구조를 관찰한 결과, 분생포자벽은 C1, C2, C3와 C4 층으로 되어 있었고, 균사 세포벽은 H1, H2, H3와 H4층으로 되어 있었다. 이러한 C3층과 H3층은 세포분화 시 색소형성 및 균사 분지형성에 필수적인 세포벽 구조임 을 시사한다. SU-NPG는 FGSC4에서와는 다르게 비정상적인 균사생장을 하였지만, 색소결핍 돌연변이를 억제하는데, 이는 SU-NPG의 균사 세포벽에는 H3층이 형성되었으며, 세포벽 형성과정은 정상적으로 진행되기 때문으로 사료된다.

MORPHOLOGICAL STUDY ON THE DIGESTION OF RICE STRAW BY TREATMENT WITH AMMONIA AND SULPHUR DIOXIDE

  • Song, Y.H.;Shimojo, M.;Goto, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제6권2호
    • /
    • pp.259-264
    • /
    • 1993
  • Rice straw treated with anhydrous ammonia and/or sulphur dioxide was incubated with rumen liquor for 24 hours and 48 hours to investigate the changes in cell wall structure caused by the treatments and bacterial degradation using scanning electron microscopy (SEM). A less significant tissue loss of untreated rice straw was inspected after incubated for 24 hours and 48 hours. Sulphuration decreased the thickness of sclerenchyma and apparently removed parenchyma tissues. Ammoniation degraded the phloem, and the lignified inner portion of the cell wall was completely, however, little collapsed epidemis and vascular bundles. Ammonia and Sulphur dioxide combined treatment removed the inner layer from outer layer. The extent of apparent degradability following combination treatment was the largest due to the enhanced microbial degradation of sclerenchyma and parenchyma cells.

선박용 대형 디젤 엔진 열 해석을 위한 CFD-FEM 연계 방법의 적용 (Application of CFD-FEM Coupling Methodology to Thermal Analysis on the Large-size Marine Diesel Engine)

  • 김한상;민경덕
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.64-70
    • /
    • 2008
  • Temperatures of engine head and liner depend on many factors such as spray and combustion process, coolant passage flow and engine related structures. To estimate the temperature distribution of engine structure, multi-dimensional computational fluid dynamics (CFD) codes have been mainly adopted. In this case, it is of great importance to obtain the realistic wall temperature distribution of entire engine structure. In the present work, a CFD-FEM coupling methodology was presented to address this demand. This approach was applied to a real large-size marine diesel engine. CFD combustion and coolant flow simulations were coupled to FEM temperature analysis. Wall heat flux and wall temperature data were interfaced between combustion simulation and solid component temperature analysis via translator by a commercial CFD package named FIRE by AVL. Heat transfer coefficient and surface temperature data were exchanged and mapped between coolant flow simulation and FEM temperature analysis. Results indicate that there exists the optimum cell thickness near combustion chamber wall to reasonably predict the wall heat flux during combustion period. The present study also shows that the effect of cell refining on predicting in-cylinder pressure during combustion is negligible. Hence, the basic guidance on obtaining the wall heat flux needed for the reasonable CFD-FEM coupling analysis has been established. It is expected that this coupling methodology is a robust tool for practical engine design and can be applied to further assessment of the temperature distribution of other engine components.

광자기 기억장치에서의 자화반전 특성 모델링 (A Modelling of magnetization reversal characteristics in magneto-optic memory system)

  • 한은실;이광형;조순철
    • 한국통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.1849-1860
    • /
    • 1994
  • 본 논문은 비정질 회토류 천이 급속 박막내에서의 자벽 역학(Magnetic domain wall dynamics)을 란다우 리프쉬츠 길버트 (Landau Lifshitz Gilbert) 방정식을 이용한 수치적 해석을 수행하여 연구하였다. 박막을 이차원 정방형 격자($30\times30$)로 나누고, 각 격자 셀(Cell)에 쌍극자간 존재한다고 상정하여, 이들 쌍극자간의 상호 교환 작용과 자기 이방성, 외부 인가 자계, 그리고 감자계의 영향이 고려되었다. 단축 자기 이방성이 존재하고 역방향의 자화가 존재한다고 가정된 상태에서 자벽이 형성되는 시간과 자벽의 두께를 알아보았다. 또한 외부 자계의 인가에 따른 자벽 이동을 연구하였다. 시뮬레이션 결과, 감자계를 고려했을 때 자벽 형성 시간이 상당히 빨라졌고, 평균 자벽의 이동도(Mobility)는 약간 증가되었다.

  • PDF

A Study on Assessment of Composite Couplings for Helicopter Rotor Blades with Multi-cell Sections

  • Jung, Sung-Nam;Park, Il-Ju;Shi, Eui-Sup;Chopra, Inderjit
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.9-18
    • /
    • 2003
  • In this work, a closed-form analysis is performed for the structural response of coupled composite blades with multi-cell sections. The analytical model includes the effects of shell wall thickness, transverse shear, torsion warping and constrained warping. The mixed beam approach based on Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. The theory is validated against experimental test data and other analytical results for coupled composite beams and blades with single-cell box-sections and two-cell airfoils. Correlation of the present method with experimental results and detailed finite element results is found to be very good.

Physical Properties of Agro-Flour Filled Aliphatic Thermoplastic Polyester Bio-Composites

  • Eom, Young Geun;Kim, Hee Soo;Yang, Han Seung;Kim, Hyun Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권3호
    • /
    • pp.71-78
    • /
    • 2004
  • The purpose of this study was to investigate the water absorption and thickness swelling of biocomposites at room temperature. These properties of bio-composites mainly depend on the ability of the agro-flour to absorb water through hydrogen bonding between water and the hydroxyl groups of the holocellulose and lignin in the cell wall. As the content of agro-flour increased, the water absorption and thickness swelling of the bio-composites increased. The effects of agro-flour content and rice husk flour (RHF) particle size on the water absorption and thickness swelling of the bio-composites were evaluated. In general, wood-based materials showed significantly higher water absorption and thickness swelling than the bio-composites. This might be attributed to the ability of the polybutylene succinate (PBS) hydrophobic polymer to prohibit the water absorption and thickness swelling of the bio-composites, Therefore, the use of agro-flour filled PBS bio-composites, which exhibit improved dimensional stability in comparison with wood-based materials, is recommended.

폐쇄형 이중세포로 된 박벽 복합재료 블레이드의 단순화 해석 모델 (A Simple Beam Model for Thin-Walled Composite Blades with Closed, Two-Cell Sections)

  • 정성남;박일주;이주영;이정진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.187-190
    • /
    • 2005
  • A simple beam model based on a mixed method is proposed for the analysis of thin-walled composite blades with a two-cell airfoil section. A semi-complementary energy functional is used to obtain the beam force-displacement relations. The theory accounts for the effects of elastic couplings, shell wall thickness, warping, and warping restraint. All the kinematic relations as well as the cross-section stiffnesses are evaluated in a closed-form through the current beam formulation. The theory has been applied to two-cell composite blades with extension-torsion couplings and fairly good correlation has been observed in comparison with a detailed analysis and other literature.

  • PDF

차압주조공정에서 공정변수가 후육 주조품의 주조특성에 미치는 영향 (Effect of Process Parameters on Thick-wall Thickness Casting Characteristics in Counter Pressure Casting Process)

  • 강호정;윤필환;이규흔;김억수;박진영
    • 한국주조공학회지
    • /
    • 제40권2호
    • /
    • pp.34-42
    • /
    • 2020
  • The effects of the initial balancing pressure, filling pressure and maximum build-up pressure on the casting characteristics of the thick-wall thickness casting during the counter-pressure casting process were investigated. Water model experiment and a computer simulation were carried out to evaluate the characteristics during the filling and solidification stages in counter-pressure casting (CPC); as a reference, the low-pressure casting (LPC) process was used. The average dendrite cell size decreased with an increase in the solidification rate and maximum build-up pressure. A turbulent flow occurred during the filling stage of the LPC process, resulting in the formation of inner gas, while a lamellar flow pattern dominated during the CPC process and was more evident with an increase in the initial balancing pressure, improving the mechanical properties of the castings.

Characterization of Two GAS1 Genes and Their Effects on Expression and Secretion of Heterologous Protein Xylanase B in Kluyveromyces lactis

  • Lian, Zhao;Jiang, Jing-Bo;Chi, Shuang;Guan, Guo-Hua;Li, Ying;Li, Ji-Lun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.1977-1988
    • /
    • 2015
  • β-1,3-glucanosyltransferases play essential roles in cell wall biosynthesis in yeast. Kluyveromyces lactis has six putative β-1,3-glucanosyltransferase genes. KlGAS1-1 and KlGAS1-2 are homologs of Saccharomyces cerevisiae gene GAS1. RT-qPCR indicated the transcription level of KlGAS1-1 was significantly reduced while heterologous protein (thermostable xylanase B) secretion was enhanced during medium optimization. To evaluate if these two events were related, and to improve xylanase B secretion in K. lactis, we constructed KlGAS1-1 and KlGAS1-2 single deletion strains and double deletion strain, respectively. KlGAS1-1 gene deletion resulted in the highest xylanase B activity among the three mutants. Only the double deletion strain showed morphology similar to that of the GAS1 deletion mutant in S. cerevisiae. The two single deletion strains differed in terms of cell wall thickness and xylanase B secretion. Transcription levels of β-1,3-glucanosyltransferase genes and genes related to protein secretion and transport were assayed. The β-1,3-glucanosyltransferase genes displayed transcription complementation in the cell wall synthesis process. KlGAS1-1 and KlGAS1-2 affected transcription levels of secretion- and transport-related genes. Differences in protein secretion ratio among the three deletion strains were associated with changes of transcription levels of secretion- and transport-related genes. Our findings indicate that KlGAS1-1 deletion is an effective tool for enhancing industrial-scale heterologous protein secretion in K. lactis.