• Title/Summary/Keyword: cell wall thickness

Search Result 121, Processing Time 0.035 seconds

Airway Remodelling in Asthma (기관지 천식에서의 기도 개형)

  • Lim, Dae Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.10
    • /
    • pp.1038-1049
    • /
    • 2005
  • Asthma is characterized by a chronic inflammatory disorder of the airways that leads to tissue injury and subsequent structural changes collectively called airway remodelling. Characteristic changes of airway remodelling in asthma include goblet cell hyperplasia, deposition of collagens in the basement membrane, increased number and size of microvessels, hypertrophy and hyperplasia of airway smooth muscle, and hypertrophy of submucosal glands. Apart from inflammatory cells, such as eosinophils, activated T cells, mast cells and macrophages, structural tissue cells such as epithelial cells, fibroblasts and smooth muscle cells can also play an important effector role through the release of a variety of mediators, cytokines, chemokines, and growth factors. Through a variety of inflammatory mediators, epithelial and mesenchymal cells cause persistence of the inflammatory infiltrate and induce airway structural remodelling. The end result of chronic airway inflammation and remodelling is an increased thickness of the airway wall, leading to a increased the bronchial hyperresponsiveness and fixed declined lung function.

The Application of TiO2 Hollow Spheres on Dye-sensitized Solar Cells

  • Cho, H. J.;Jung, D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4382-4386
    • /
    • 2011
  • $TiO_2$ hollow spheres were fabricated by using $SiO_2$ as an inorganic template. Spherical $SiO_2$ particles were coated by $TiO_2$ through the nucleation process, and then the core $SiO_2$ part was eliminated by using HF solution. Finally, $TiO_2$ hollow spheres were obtained. The size of the $TiO_2$ hollow spheres was about 300-400 nm and the thickness of the hollow wall was about 20-30 nm. The hollow has several holes whose diameters were within 100-200 nm. Dye-sensitized solar cells fabricated by using the $TiO_2$ hollow spheres were characterized. The solar conversion efficiency of the cell was 8.45% when $TiO_2$ hollow spheres were used as a scattering material, while it was 4.59% when $TiO_2$ hollow spheres were used as a normal electrode material.

Numerical Analysis of Cyclic Deformation of Polymer Foam Film Using Stretched Truncated Octahedron Model (모서리가 제거된 팔면체 인장모델을 이용한 다공성 폴리머 박막의 반복변형거동 수치해석)

  • Yoo, Ui-Kyung;Lee, Young-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.104-110
    • /
    • 2010
  • Cyclic deformations of polymer foam film are simulated using the finite element method. Material of polymer foam film is polypropylene (PP). The calculated polymer foam film is micro-scale thin film has cellular structure. The polymer foam film is used in ferro-electret applications. The polymer foam film is idealized to one cell structure as lens shaped stretched truncated octahedron model. Cyclic deformation is performed by uniaxial stretching. Stretching direction is perpendicular to plane of cellular film. Various cyclic strain amplitudes, pore wall thicknesses, pore shape are investigated to find deformation tendency of cellular structure. Consequently, cellular structure has various macroscopic stresses on cyclic deformation with various pore thickness and pore shape.

A Study on the Dielectric Breakdown Strength and Transparency of Dielectric Layer on the Discharge Electrodes in PDP (PDP에서 방전전극상의 유전층의 절연내력과 투명도에 관한 연구)

  • Lee, Sung-Hyun;Kim, Young-Kee;Chi, Sung-Won;Cho, Jung-Soo;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.379-381
    • /
    • 1997
  • The dielectric layers in AC plasma display panel(AC PDP) are essential to the discharge cell structure, because they protect metal electrodes from sputtering by positive ion and from a sheath of wall charges which are essential to memory function of AC PDP. Furthermore, this layer should be transparent because the visible light must pass through the layer. In this paper, the dielectric breakdown strength and transparency of the dielectric layer on the discharge electrodes are studied. The variables in this test are the dielectric layer thickness, dielectric firing condition, gas pressure, species of gas and so on.

  • PDF

Cross-sectional Constants of Thin-walled Composite Blades with Elliptical Profiles (타원형 단면형상을 갖는 복합재료 박판 블레이드의 단면상수 계산)

  • 박일주;이주영;정성남;신의섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.95-98
    • /
    • 2003
  • In this work, a closed-form analysis is performed to obtain the stiffness coefficients of thin-walled composites beams with elliptical profiles. The analytical model includes the effects of elastic couplings, shell wall thickness, torsion warping and constrained warping. Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. The theory is validated against MSC/NASTRAN results for coupled composites beams with single-cell elliptical sections. Very good correlation has been noticed for the test cases considered.

  • PDF

Ray Parenchyma and Ray Tracheid Structure of Four Korean Pine Wood Species

  • Ahmed, Sheikh Ali;Chong, Song-Ho;Chun, Su-Kyoung;Park, Byung-Su
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.4
    • /
    • pp.101-107
    • /
    • 2006
  • To know the structural difference between the ray parenchyma and ray tracheid among Pinus densiflora, Pinus rigida, Pinus koraiensis and Larix kaempferi, an observation was carried out under the FE-SEM. The longest ray parenchyma and ray tracheid were found in Pinus koraiensis species while the shortest ray tracheid and ray parenchyma were found in Pinus densiflora and Larix kaempferi. Larix kaempferi had more than one endwall pit in its ray parenchyma. Pinus densiflora was found highest in the pit aperture diameter in ray tracheid and aperture diameter in the cross-field pit. The pit border width in ray tracheid and lumen diameter of ray parenchyma were found highest in Pinus rigida. The cell wall thickness of ray parenchyma and pit aperture diameter in endwall pit of ray tracheid were found highest in Pinus koraiensis compared to other species.

  • PDF

Micro Structure Fabrication Using Injection Molding Method (인젝션 몰딩 기술을 이용한 마이크로 구조물 성형)

  • Je T. J.;Shin B. S.;Chung S. W.;Cho J. W.;Park S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.253-259
    • /
    • 2002
  • Micro cell structures with high aspect ratio were fabricated by injection molding method. The mold inserts had dimension $1.9cm\times8.3cm$ composed of a lot of micro posts and were fabricated by LIGA process. The size of the micro posts was $157{\mu}m\times157{\mu}m\times500{\mu}m$ and the gaps between two adjacent posts were $50{\mu}m$. Using Polymethylmethacrylate (PMMA) injection molding was performed. The key experimental variables were temperature, pressure, and time. By controlling these, good shaped mim cell structures with $50{\mu}m$ in wall thickness and $500{\mu}m$ in depth were obtained. In order to understand micro molding mechanism, shape changes of molded PMMA were studied with experimental variables. And the durability of mold insert was investigated, too. The results show that the most important factor in molding processes was the mold temperature that is closely related to the filling of the melt into the micro cavity. And the holding time before cooling showed a great effect on the quality of molded PMMA.

  • PDF

In-vitro study on the hemorheological characteristics of chicken blood in microcirculation

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.89-95
    • /
    • 2007
  • The flow characteristics of chicken blood in a micro-tube with a $100{\mu}m$ diameter are investigated using a micro-Particle Image Velocimetry (PIV) technique. Chicken blood with 40% hematocrit is supplied into the micro-tube using a syringe pump. For comparison, the same experiments are repeated for human blood with 40% hematocrit. Chicken blood flow has a cell-free layer near the tube wall, and this layer's thickness increases with the increased flow speed due to radial migration. As a hemorheological feature, the aggregation index of chicken blood is about 50% less than that of human blood. Therefore, the non-Newtonian fluid features of chicken blood are not very remarkable compared with those of human blood. As the flow rate increases, the blunt velocity profile in the central region of the micro-tube sharpens, and the parabolicshaped shear stress distribution becomes to have a linear profile. The viscosity of both blood samples in a low shear rate condition is overestimated, while the viscosity in a high shear rate range is underestimated due to radial migration and the presence of a cell-depleted layer.

Effect of hematocrit on hemorheological characteristics of blood flow in a microtube (헤마토크릿에 따른 혈액의 유변학적 특성 변화)

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.111-112
    • /
    • 2006
  • In order to investigate flow characteristics of blood flow in a micro tube ($100{\mu}m$ in diameter) according to hematocrit, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, a 2 head Nd:YAG laser, a 12 bit cooled CCD camera and a delay generator. Blood was supplied into the micro tube using a syringe pump. Hematocrit of blood was controlled to be 20%, 30% and 40%. The blood flow has a cell free layer near the tube wall and its thickness was changed with increasing the flow rate and hematocrit. The hemorheological characteristics such as shear rate and viscosity were evaluated using the velocity field data measured. As the flow rate increased, the blunt velocity profile in the tube center was sharpened. The viscosity of blood was rapidly increased with decreasing shear rate, especially in the region of low shear rate, changing RBC rheological properties. The variation of velocity profile and blood viscosity shows typical characteristics of Non-Newtonian fluids. On the basis of inflection points, the cell free layer and two-phase flow consisting of plasma and suspensions including RBCs were clearly discriminated.

  • PDF

Characterization of Purple-discolored, Uppermost Leaves of Soybean; QTL Mapping, HyperspectraI Imaging, and TEM Observation

  • JaeJin Lee;Jeongsun Lee;Seongha Kwon;Heejin You;Sungwoo Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.187-187
    • /
    • 2022
  • Purple-discoloration of the uppermost leaves has been observed in some soybean cultivars in recent years. The purpose of this study was to characterize the novel phenotypic changes between the uppermost and middle leaves via multiple approaches. First, quantitative trait loci mapping was conducted to detect loci associated with the novel phenotype using 85 recombinant inbred lines (RILs) of the 'Daepung' × PI 96983 population. 180K SNP data, a major quantitative trait locus (QTL) was identified at around 60 cM of chromosome 6, which accounts for 56% of total phenotypic variance. The genomic interval is about ~700kb, and a list of annotated genes includes the T-gene which is known to control pubescence and seed coat color and is presumed to encode flavonoid 35-hydroxylase (F3'H). Based on Hyperspectral imaging, the reflectance at 528-554 nm wavelength band was extremely reduced in the uppermost leaves compared to the middle (green leaves), which is presumed die to the accumulation of anthocyanins. In addition, purple-discolored leaf tissues were observed and compared to normal leaves using a transmission electronic microscope (TEM). Base on observations of the cell organelles, the purple-discolored uppermost leaves had many pigments formed in the epidermal cells unlike the normal middle leaves, and the cell wall thickness was twice as thick in the discolored leaves. The thickness of the thylakoid layer in the chloroplast the number of starch grains, the size of starch all decreased in the discolored leaves, while the number of plastoglobule and mitochondria increased.

  • PDF