• Title/Summary/Keyword: cell surface protein

Search Result 461, Processing Time 0.025 seconds

Development of a Novel Cell Surface Attachment System to Display Multi-Protein Complex Using the Cohesin-Dockerin Binding Pair

  • Ko, Hyeok-Jin;Song, Heesang;Choi, In-Geol
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1183-1189
    • /
    • 2021
  • Autodisplay of a multimeric protein complex on a cell surface is limited by intrinsic factors such as the types and orientations of anchor modules. Moreover, improper folding of proteins to be displayed often hinders functional cell surface display. While overcoming these drawbacks, we ultimately extended the applicability of the autodisplay platform to the display of a protein complex. We designed and constructed a cell surface attachment (CSA) system that uses a non-covalent protein-protein interaction. We employed the high-affinity interaction mediated by an orthogonal cohesin-dockerin (Coh-Doc) pair from Archaeoglobus fulgidus to build the CSA system. Then, we validated the orthogonal Coh-Doc binding by attaching a monomeric red fluorescent protein to the cell surface. In addition, we evaluated the functional anchoring of proteins fused with the Doc module to the autodisplayed Coh module on the surface of Escherichia coli. The designed CSA system was applied to create a functional attachment of dimeric α-neoagarobiose hydrolase to the surface of E. coli cells.

Cellular Adhesions and Protein Dynamics on Carbon Nanotube/Polymer composites Surfaces

  • Gang, Min-Ji;Wang, Mun-Pyeong;Im, Yeon-Min;Kim, Jin-Guk;Gang, Dong-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • Possessing of carbon nanotubes in biopolymer intrigued much interest due to their mechanical and unique nanoscale surface properties. Surface stiffness can be controlled by the amount of carbon nanotubes in polymer and surface wettability can be altered by the order of nanoscale surface roughness. Protein adsorption mechanism on nanostructured carbon nanotube/polymer thin film will be discussed in this study. In addition, we identified that mechanical stimuli also contribute the messenchymal stem cell and bone cell interactions. Importantly, live cell analysis system also showed altered morphology and cellular functions. Thus, embedding of carbon nanostructures simultaneously contribute to protein adsorption and cellular interactions. In conclusion, this study demonstrated the evidence that nanoscale surface features determine the subsequent biological interactions, such as protein adsorption and cellular interactions.

  • PDF

Constitutive Expression of Lipase on the Cell Surface of Escherichia coli using OmpC Anchoring Motif

  • Lee, Seung Hwan;Lee, Sang Yup
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.280-285
    • /
    • 2020
  • We have developed a constitutive display system of the Pseudomonas fluorescens SIK W1 TliA lipase on the cell surface of Escherichia coli using E. coli outer membrane protein C (OmpC) as an anchoring motif, which is an economical compared to induced system. For the constitutive expression of truncated OmpC-TliA fusion proteins, gntT104 promoter was employed. Cell growth was not affected by over expression of fusion protein during entire culture time, suggesting cell lysis was not a problem. The localization of truncated OmpC-TliA fusion protein on the cell surface was confirmed by immunofluorescence microscopy and measuring whole cell lipase activity. Constitutively displayed lipase was very stable, retaining activity enantioselectivity throughout the five repeated reactions. These results suggest that OmpC from E. coli be a useful anchoring motif for displaying enzymes on the cell surface without any inducers, and this stable surface display system can be employed for a broad range of biotechnological applications.

Yeast cell surface display of cellobiohydrolase I

  • Lee, Sun-Kyoung;Suh, Chang-Woo;Hwang, Sun-Duk;Kang, Whan-Koo;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.468-472
    • /
    • 2003
  • Recently, genetic engineering techniques have been used to display various heterologous peptides and proteins (enzyme, antibody, antigen, receptor and fluorescence protein, etc.) on the yeast cell surface. Living cells displaying various enzymes on their surface could be used repeatedly as 'whole cell biocatalysts' like immobilized enzymes. We constructed a yeast based whole cell biocatalyst displaying T. reesei cellobiohydrolase I (CBH I ) on the cell surface and endowed the yeast-cells with the ability to degrade cellulose. By using a cell surface engineering system based on ${\alpha}-agglutinin,$ CBH I was displayed on the cell surface as a fusion protein containing the N-terminal leader peptide encoding a Gly-Ser linker and the $Xpress^{TM}$ epitope. Localization of the fusion protein on the cell surface was confirmed by confocal microscopy. In this study, we report on the genetic immobilization of T. reesei CBH I on the S. cerevisiae and hydrolytic activity of cell surface displayed CBH I.

  • PDF

Comparison of the Organophosphorus Hydrolase Surface Display Using InaVN and Lpp-OmpA Systems in Escherichia coli

  • Karami, Ali;Latifi, Ali Mohamad;Khodi, Samaneh
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.379-385
    • /
    • 2014
  • The purpose of this study was to compare the ability of an engineered Escherichia coli to degrade chlorpyrifos (Cp) using an organophosphorus hydrolase enzyme, encoded in both Flavobacterium sp. ATCC 27551 or Pseudomonas diminuta, by employing the Lpp-OmpA chimera and the N-terminal domain of the ice nucleation protein as anchoring motifs. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by both anchors on the outer membrane. This is the first report on the presentation of OPH on the cell surface by Lpp-OmpA under the control of the T7 promoter. The results showed cell growth in the presence of Cp as the sole source of energy, without growth inhibition, and with higher whole-cell activity for both cells harboring plasmids pENVO and pELMO, at approximately 10,342.85 and 10,857.14 U/mg, respectively. Noticeably, the protein displayed by pELMO was lower than the protein displayed by pENVO. It can be concluded that Lpp-OmpA can display less protein, but more functional OPH protein. These results highlight the high potential, of both engineered bacteria, for use in the bioremediation of pesticide-contaminated sources in the environment.

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.

Display of green fluorescent protein (GFP) on the cell surface of Zymomonas mobilis using N-terminal domain of ice nucleation protein (빙핵활성단백질의 N-terminal 부분을 이용한 녹색형광단백질의 Zymomonas mobilis 세포 표면 발현)

  • Lee, Eun-Mo;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.115-119
    • /
    • 2009
  • Green fluorescent protein (GFPuv) was displayed on the surface of ethanol-producing bacteria Zymomonas mobilis using N-terminal domain of ice nucleation protein (INP) as an anchoring motif. To evaluate the ice nucleation protein as plausible anchor motif in Z. mobilis, GFPuv gene was subcloned into Zymomonas expression vector yielding pBBR1MCS-3/pPDC/INPN/GFPuv plasmid., INP-GFPuv fusion protein was expressed in Z. mobilis and its fluorescence was verified by confocal microscopy. The successful display of GFPuv on Zymomonas mobilis suggest that INP anchor motif could be used for future fusion partner in Z. mobilis strain improvement.

  • PDF

Conjugation of mono-sulfobetaine to alkyne-PPX films via click reaction to reduce cell adhesion

  • Chien, Hsiu-Wen;Keng, Ming-Chun;Chen, Hsien-Yeh;Huang, Sheng-Tung;Tsai, Wei-Bor
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.1
    • /
    • pp.59-69
    • /
    • 2016
  • A surface resisting protein adsorption and cell adhesion is highly desirable for many biomedical applications such as diagnostic devices, biosensors and blood-contacting devices. In this study, a surface conjugated with sulfobetaine molecules was fabricated via the click reaction for the anti-fouling purpose. An alkyne-containing substrate (Alkyne-PPX) was generated by chemical vapor deposition of 4-ethynyl-[2,2]paracyclophane. Azide-ended mono-sulfobetaine molecules were synthesized and then conjugated on Alkyne-PPX via the click reaction. The protein adsorption from 10% serum was reduced by 57%, while the attachment of L929 cells was reduced by 83% onto the sulfobetaine-PPX surface compared to the protein adsorption and cell adhesion on Alkyne-PPX. In conclusion, we demonstrate that conjugation of mono-sulfobetaine molecules via the click chemistry is an effective way for reduction of non-specific protein adsorption and cell attachment.

Generation and Characterization of a Monoclonal Antibody with Specificity for Mycoplasma arginini

  • Son, Yeon-Sung;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Previously, we generated monoclonal antibodies (MAbs) that bound to the surface of human embryonic stem cells (hESCs) in an attempt to discover new hESC-specific surface markers. In this study, MAb 47-235 (IgG1, ${\kappa}$) was selected for further characterization. The MAb bound to the surface of undifferentiated hESCs but did not bind to mouse ESCs or mouse embryonic fibroblast cells in flow cytometric analysis. The antibody immunoprecipitated a 47 kDa protein from the lysates of cell surface-biotinylated hESCs. Identification of the protein by quadrupole time of flight tandem mass spectrometry revealed that 47-235 binds to Ag 243-5 protein of Mycoplasma arginini. BM-Cyclin treatment of the hESCs that reacted with 47-235 resulted in loss of mycoplasma DNA and the reactivity to 47-235. Nevertheless, the hESCs that were reactive to 47-235 maintained self-renewal and pluripotency and thus could be differentiated into three embryonic germ layers.

Yeast two-hybrid assay with fluorescence reporter (형광 리포터를 활용한 효모 단백질 잡종 기법 개발)

  • Park, Seong Kyun;Seo, Su Ryeon;Hwang, Byung Joon
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.199-205
    • /
    • 2019
  • Yeast two-hybrid (Y2H) technique has been used to study protein-protein interactions, but its application particularly to a large-scale analysis of protein interaction networks, is limited by the fact that the technique is labor-intensive, based on scoring colonies on plate. Here, we develop a new reporter for the measurement of the protein-protein interactions by flow cytometry. The yeast harboring interacting proteins can also be enriched by fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting (MACS). When two interacting proteins are present in the same yeast cell, a reporter protein containing 10 tandem repeats of c-myc epitope becomes localized on the surface of the cell wall, without affecting cell growth. We successful measured the surface display of c-myc epitope upon interacting p53 with SV40 T antigen by flow cytometry. Thus, the newly developed Y2H assay based on the display of c-myc repeat on yeast cell wall could be used to the simultaneous analysis of multiple protein-protein interactions without laborious counting colonies on plate.