• 제목/요약/키워드: cell surface protein

검색결과 461건 처리시간 0.03초

Novel Surface Modifications for Medical Applications

  • 박기동
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.78-78
    • /
    • 2016
  • For the past three decades, extensive research has been performed in the surface design of new polymers for a variety of medical applications. Great progress in therapeutics and diagnostics can be attributed to these scientific advances in biomedical polymers. A variety of bioinert materials or bioactive materials using drugs, cells, and growth factors are widely utilized for the implants, devices and tissue regeneration. These materials provide an improved biocompatible materials to host, to significantly decrease or increase the host/tissue/blood response to the foreign materials. In the future, biomaterials will play a different role in modern therapeutics. New materials will be tailored to interact more on a protein and cellular level to achieve high degree of biocompatibility, biospecificity and bioacitivity. In this presentation, various biocompatible materials based on surface/bulk engineering will be demonstrated, which can be utilized as therapeutics implants and therapeutic vehicles for biologically active molecules such as cell, protein /peptide and gene.

  • PDF

Mitoxantrone Binds to Nopp140, an Intrinsically Unstructured Protein, and Modulate its Interaction with Protein Kinase CK2

  • Lee, Won-Kyu;Lee, Sang-Yeop;Na, Jung-Hyun;Jang, Sung-Woo;Park, Chan-Ryang;Kim, Soo-Youl;Lee, Si-Hyeong;Han, Kyou-Hoon;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.2005-2011
    • /
    • 2012
  • Nopp140 is a highly phosphorylated protein that resides in the nucleolus of mammalian cell and is involved in the biogenesis of the nucleolus. It interacts with a variety of proteins related to the synthesis and assembly of the ribosome. It also can bind to a ubiquitous protein kinase CK2 that mediates cell growth and prevents apoptosis. We found that Nopp140 is an intrinsically unfolded protein (IUP) lacking stable secondary structures over its entire sequence of 709 residues. We discovered that mitoxantrone, an anticancer agent, was able to enhance the interaction between Nopp140 and CK2 and maintain suppressed activity of CK2. Surface plasma resonance studies on different domains of Nopp140 show that the C-terminal region of Nopp140 is responsible for binding with mitoxantrone. Our results present an interesting example where a small chemical compound binds to an intrinsically unfolded protein (IUP) and enhances protein-protein interactions.

물리화학적 및 생물학적으로 표면개질된 고분자의 세포 적합성 연구 (Cell-compatibility of physicochemically and biologically modified polymer surfaces)

  • 이진호;박경희;강길선;이해방
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1989년도 춘계학술대회
    • /
    • pp.1-3
    • /
    • 1989
  • We have treated polymer surfaces such as polyethylene, polystyrene and polyester by various physicochemical and biological surface modification methods to be suitable for cell adhesion. The physicochemical methods we used were $O_2$ plasma discharge, corona discharge, sulfuric acid and chloric acid treatments. For the biological treatments, blood proteins such as plasma protein, serum protein and fibronectin were adsorbed onto the polymer surfaces. Chinese Hamster Ovary (CHO) cells were cultured on the surface-modified polymers and the cell-compatibility of those surfaces were compared. The chloric acid and fibronectin treatments were found to be the best methods of rendering the polymer surfaces adhesive for CHO cells.

  • PDF

Proteomic Analysis of the Hydrophobic Fraction of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood

  • Jeong, Ju Ah;Lee, Yoon;Lee, Woobok;Jung, Sangwon;Lee, Dong-Seong;Jeong, Namcheol;Lee, Hyun Soo;Bae, Yongsoo;Jeon, Choon-Ju;Kim, Hoeon
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.36-43
    • /
    • 2006
  • Mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering, but their application has been impeded by lack of knowledge of their core biological properties. In order to identify MSC-specific proteins, the hydrophobic protein fraction was individually prepared from two different umbilical cord blood (UCB)-derived MSC populations; these were then subjected to two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). Although the 2D gel patterns differed somewhat between the two samples, computer-assisted image analysis identified shared protein spots. 35 spots were reliably identified corresponding to 32 different proteins, many of which were chaperones. Based on their primary sub-cellular locations the proteins could be grouped into 6 categories: extracellular, cell surface, endoplasmic reticular, mitochondrial, cytoplasmic and cytoskeletal proteins. This map of the water-insoluble proteome may provide valuable insights into the biology of the cell surface and other compartments of human MSCs.

Plasma Surface Modification of Patterned Polyurethane Acrylate (PUA) Film for Biomedical Applications

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.223.2-223.2
    • /
    • 2015
  • Polyurethane acrylate (PUA) has been introduced to utilize as a mold material for sub-100 nm lithography as it provides advantages of stiffness for nanostructure formation, short curing time, flexibility for large area replication and transparency for relevant biomedical applications. Due to the ability to fabricate nanostructures on PUA, there have been many efforts to mimic extracellular matrix (ECM) using PUA especially in a field of tissue engineering. It has been demonstrated that PUA is useful for investigating the nanoscale-topographical effects on cell behavior in vitro such as cell attachment, spreading on a substrate, proliferation, and stem cell fate with various types of nanostructures. In this study, we have conducted surface modification of PUA films with micro/nanostructures on their surfaces using plasma treatment. In general, it is widely known that the plasma treated surface increases cell attachment as well as adsorption of ECM materials such as fibronectin, collagen and gelatin. Effect of plasma treatment on PUA especially with surface of micro/nanostructures needs to be understood further for its biomedical applications. We have evaluated the modified PUA film as a culture platform using adipose derived stem cells. Then, the behavior of stem cells and the level of adsorbed protein have been analyzed.

  • PDF

Colocalization of ${\alpha}$of Gq Protein with Actin Filaments in L8E63 Cells

  • Chae, Sungsuk;Park, Dongeun
    • Animal cells and systems
    • /
    • 제1권1호
    • /
    • pp.93-98
    • /
    • 1997
  • The present study investigated the cellular localization of a-subunit of Gq (Gaq) protein in developing L8E63, rat skeletal muscle cell line. The colocalization of Gaq with actin cytoskeleton was demonstrated by double-labeling experiments. In mononucleated myoblasts, the immuno-fluorescence staining pattern of Gaq was almost identical with that of F-actin visualized with rhodamine-conjugated phalloidin. However, this colocalization of Gaq with cytoskeleton was not maintained in multinucleated myotubes. The staining pattern of Gaq in myotubes did not match with any specific subcellular structure, but appeared as a uniformly distributed diffuse staining throughout the whole cell surface. Interestingly, change in the expression level of Gaq was not detected during myoblast differentiation, suggesting that actin-associated Gaq protein might dissociate from the cytoskeleton as cells differentiate. Immunocytochemical experiments using specific antibodies directed against several G proteins indicated that the subcellular localizations of Gai1, Gai2, Gai3, and Gao were different from those obtained with Gaq.

  • PDF

간흡충에 감염된 실험쥐 담관 섬유모세포의 미세구조적 변화 (Ultrastructural Change of the Bile Duct Fibroblast at Infected Rat with Clonorchis sinensis)

  • 김수진;민병훈
    • Applied Microscopy
    • /
    • 제34권2호
    • /
    • pp.121-130
    • /
    • 2004
  • 동물의 결합조직에 분포하고 있는 섬유모세포 (fibroblast)는 결합조직을 구성하는 세포의 한 종류로서 세포질 돌기들이 잘 발달된 형태적 특징이 있는 것으로 실험쥐 담관의 경우 간흡충 등의 기생충에 의하여 물리, 화학적 상해를 받았을 때 세포변이가 유발될 뿐만 아니라, 담관 암세포로 전이되기도 하는 것으로 알려져 있다. 따라서 저자 등은 실험쥐의 담관이 기생충에 의한 상해를 받았을 때 섬유모세포의 세포 표면과 세포질의 변화를 알아보고자 실험쥐 담관에서 섬유모세포를 분리하여 전자현미경으로 확인하고 다음과 같은 결과를 얻었다. 대조군 실험쥐 담관의 섬유모세포들은 일반적인 형태로 세포돌기, 세포표면 및 세포질을 구성하고 있었으나 간흡충 감염군 실험쥐 담관의 섬유모세포는 미세소관에 의한 세포질 돌기들이 다수 발달하고 다양한 종류의 포낭형 조면소포체 그리고 세포질에 전자밀도가 높은 다양한 액포, 높은 밀도의 리보좀을 포함하는 조면소포체, 다양한 형태의 과립 및 많은 수의 미세섬유가 관찰되는 형태적 변화가 관찰되었다. 간흡충에 감염된 담관의 섬유모세포는 간흡충에 의하여 상해 받은 세포가 물리화학적 자극에 의한 적응으로 단백질 합성이 증가하며 multi-vesicular 형태의 Golgi복합체가 생성되고, 세포질돌기 형성하는 것으로 확인되었다. 세포질에 광범위하게 분포하는 multi-vesicle은 당말단인 sialic acid를 포함하고 세포내에서 세포표면의 미세융모에 이르기까지 이동하는 것으로 확인되었다. 이상의 결과로 간흡충 감염 실험쥐로부터 분리된 섬유모세포는 actin단백으로 구성된 세포돌기가 잘 발달하고, 세포내 조면소포체에서 형성된 단백질이 Golgi복합체에서 당말단인 sialic acid로 전환되어 세포표면에 분포하게 된다. 이는 간흡충 감염으로 물리 화학적 자극 자극받은 섬유세포가 미세구조적 변화를 유발하는 것으로 확인되었다.

Chimeric Protein of CD8a Extracellular Domain and CD4 Transmembrane and Cytoplasmic Domain Binds More Efficiently to p561ck than CD8a

  • Young Il Choi;Sang Dai Park;Rho Hyun Seong
    • Animal cells and systems
    • /
    • 제3권3호
    • /
    • pp.331-336
    • /
    • 1999
  • p56$^{Ick}$, a cytoplasmic protein tyrosine kinase of the src family, is non-covalently associated with the cell surface coreceptors CD4 and CD8, which are expressed on thymocytes and mature T cells. The coreceptor protein plays an important role during the differentiation of thymocytes and the activation of T cells. DNA constructs were designed to study the roles of CD4 and CD8 during the differentiation of thymocytes. One is a chimeric cDNA which consists of coding regions for the extracellular domain of CD8a and the transmembrane and cytoplasmic domain of CD4. The other is the same chimeric cDNA but with a point mutation converting Cys to Ala in the Ick-binding site to disrupt the association. We confirmed that the CD8a/CD4 chimeric molecule bound to Ick more efficiently than the wild type CD8a protein. However, the chimeric protein with the Cys$leftrightarro$Ala mutation did not associate with Ick. The results suggest a possibility that the CD8a/CD4 chimeric protein may behave like a CD4 protein in associating with Ick and that it may deliver a signal inside the cell in a similar manner, Analysing effects of the mutant CD8a/CD4 chimeric protein expression in developing thymocytes will elucidate the role of Ick during the determination of CD4/CD8 cell lineages.

  • PDF

Cell Surface Antigen Display for Neuronal Differentiation-Specific Tracking

  • Kim, Sang Chul;Lee, Eun-Hye;Yu, Ji Hea;Kim, Sang-Mi;Nam, Bae-Geun;Chung, Hee Yong;Kim, Yeon-Soo;Cho, Sung-Rae;Park, Chang-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.78-84
    • /
    • 2019
  • Cell therapeutic agents for treating degenerative brain diseases using neural stem cells are actively being developed. However, few systems have been developed to monitor in real time whether the transplanted neural stem cells are actually differentiated into neurons. Therefore, it is necessary to develop a technology capable of specifically monitoring neuronal differentiation in vivo. In this study, we established a system that expresses cell membrane-targeting red fluorescent protein under control of the Synapsin promoter in order to specifically monitor differentiation from neural stem cells into neurons. In order to overcome the weak expression level of the tissue-specific promoter system, the partial 5' UTR sequence of Creb was added for efficient expression of the cell surface-specific antigen. This system was able to track functional neuronal differentiation of neural stem cells transplanted in vivo, which will help improve stem cell therapies.

Candidacidal Effects of Rev (11-20) Derived from HIV-1 Rev Protein

  • Lee, Juneyoung;Lee, Dong Hwan;Lee, Dong Gun
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.403-406
    • /
    • 2009
  • Rev is an essential regulatory protein for HIV-1 replication. Rev (11-20) is known as the significant region regarding the function of a nuclear entry inhibitory signal (NIS) of Rev. In this study, anticandidal effects and mechanism of action of Rev (11-20) were investigated. The result exhibited that Rev (11-20) contained candidacidal activities. To understand target site(s) of Rev (11-20), the intracellular localization of the peptide was investigated. The result showed that Rev (11-20) rapidly accumulated in the fungal cell surface. The cell wall regeneration test also indicated that Rev (11-20) exerted its anticandidal activity to fungal plasma membrane rather than cell wall. The fluorescent study using 1,6-diphenyl-1,3,5-hexatriene (DPH) further confirmed the membrane-disruption mechanism(s) of Rev (11-20). The present study suggests that Rev (11-20) possesses significant potential regarding therapeutic agents for treating fungal diseases caused by Candida species in humans.