• Title/Summary/Keyword: cell splitting

Search Result 88, Processing Time 0.028 seconds

Multicast Switch for High Speed Packet Transmission (고속 패킷 전송을 위한 멀티캐스트 스위치)

  • 손동욱;손유익
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.412-414
    • /
    • 2001
  • 본 논문은 초고속통신망에서 멀티캐스트 스위칭에서 발생될 수 있는 오버플로우 문제와 블로킹 문제를 보다 효율적으로 해결하고, 공정하게 입력포트에 접근함으로 작은 fanout에 대한 불공정성을 해결하기 위한 멀티캐스트 스위치를 제안하고자 한다. 제안된 스위치는 셀 분할(cell pre-splitting)과 공유된 버퍼, Group Spliiting, 그리고 그룹분할망으로 구성되어지며, 큰 fanout에 대한 작은 fanout을 가진 입력포트에 도착한 패킷의 불공정한 대우를 해결하여 시스템 전체 지연 시간을 줄여 산출량을 극대화할 수 있다.

  • PDF

Fabrication of High-purity Rb Vapor Cell for Electric Field Sensing

  • Jae-Keun Yoo;Deok-Young Lee;Sin Hyuk Yim;Hyun-Gue Hong;Sun Do Lim;Seung Kwan Kim;Young-Pyo Hong;No-Weon Kang;In-Ho Bae
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.207-212
    • /
    • 2023
  • In this paper, we introduce our system for manufacturing a Rb vapor cell and describe its fabrication process in a sequence of removing impurities, cold trapping, and sealing off. Saturated absorption spectroscopy was performed to verify the quality of our cell by comparing it to that of a commercial one. By using the lab-fabricated Rb vapor cell, we observed electromagnetically induced transparency in a ladder-type system corresponding to the 5S1/2-5P3/2-28D5/2 transition of the 85Rb atom. A highly excited Rydberg atomic system was prepared using two counter-propagating external cavity diode lasers with wavelengths of 780 nm and 480 nm. We also observed the Autler-Townes splitting signal while a radio-frequency source around 100 GHz incidents into the Rydberg atomic medium.

The Study of Growth and Characterization of CuGaSe$_2$ Sing1e Crystal Thin Films for solar cell by Hot Wall Epitaxy (HWE(Hot Wall Epitaxy)에 의한 태양 전지용 박막성장과 특성에 관한 연구)

  • 홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.237-242
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CuGaSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 610$^{\circ}C$ and 450$^{\circ}C$, respectively The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting Δ So and the crystal field splitting ΔCr were 91 meV and 249.8 meV at 20 K, respectively. From the Photoluminescence measurement on CuGaSe$_2$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy 7f neutral acceptor bound excision were 8 meV and 35.2 meV, respectivity. By Haynes rule, an activation energy of impurity was 355.2 meV

  • PDF

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows

  • Zhang, Ling;Ouyang, Jie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.27-40
    • /
    • 2012
  • The two-dimensional incompressible flow of a linear viscoelastic fluid we considered in this research has rapidly oscillating initial conditions which contain both the large scale and small scale information. In order to grasp this double-scale phenomenon of the complex flow, a multiscale analysis method is developed based on the mathematical homogenization theory. For the incompressible flow of a linear viscoelastic Maxwell fluid, a well-posed multiscale system, including averaged equations and cell problems, is derived by employing the appropriate multiple scale asymptotic expansions to approximate the velocity, pressure and stress fields. And then, this multiscale system is solved numerically using the pseudospectral algorithm based on a time-splitting semi-implicit influence matrix method. The comparisons between the multiscale solutions and the direct numerical simulations demonstrate that the multiscale model not only captures large scale features accurately, but also reflects kinetic interactions between the large and small scale of the incompressible flow of a linear viscoelastic fluid.

Preparation of graphene by chemical exfoliation for application to the photoelectrochemical cell (광전기화학 셀 적용을 목적으로 하는 화학적 박리법을 통한 그래핀의 제조)

  • Yoon, Sang-Hyeok;Lee, Dae-Won;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.59-65
    • /
    • 2015
  • As the fossil fuels are depleted nowadays, development of alternative energies is absolutely required in the world. Efficient production of hydrogen by water-splitting using solar energy can be one of the methods to solve the global energy and environmental problems. But this method has a problem of low conversion efficiency. The application of graphene can be one method to help increase the conversion efficiency. For this reason, mass production of high quality graphene is required. In this study, we prepared graphene using the chemical exfoliation method. We applied the Hummer's method and Tour's method to oxidize the graphite and could get the different Graphene Oxide(GO) from different process conditions. We also tried to convert the GO to graphene by thermal reduction and could remove functional group of GO effectively. The control of oxidation conditions was quite important to obtain the high quality graphene.

  • PDF

All Solution processed BiVO4/WO3/SnO2 Heterojunction Photoanode for Enhanced Photoelectrochemical Water Splitting

  • Baek, Ji Hyun;Lee, Dong Geon;Jin, Young Un;Han, Man Hyung;Kim, Won Bin;Cho, In Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.417-417
    • /
    • 2016
  • Global environmental deterioration has become more serious year by year and thus scientific interests in the renewable energy as environmental technology and replacement of fossil fuels have grown exponentially. Photoelectrochemical (PEC) cell consisting of semiconductor photoelectrodes that can harvest light and use this energy directly to split water, also known as photoelectrolysis or solar water splitting, is a promising renewable energy technology to produce hydrogen for uses in the future hydrogen economy. A major advantage of PEC systems is that they involve relatively simple processes steps as compared to many other H2 production systems. Until now, a number of materials including TiO2, WO3, Fe2O3, and BiVO4 were exploited as the photoelectrode. However, the PEC performance of these single absorber materials is limited due to their large charge recombinations in bulk, interface and surface, leading low charge separation/transport efficiencies. Recently, coupling of two materials, e.g., BiVO4/WO3, Fe2O3/WO3 and CuWO4/WO3, to form a type II heterojunction has been demonstrated to be a viable means to improve the PEC performance by enhancing the charge separation and transport efficiencies. In this study, we have prepared a triple-layer heterojunction BiVO4/WO3/SnO2 photoelectrode that shows a comparable PEC performance with previously reported best-performing nanostructured BiVO4/WO3 heterojunction photoelectrode via a facile solution method. Interestingly, we found that the incorporation of SnO2 nanoparticles layer in between WO3 and FTO largely promotes electron transport and thus minimizes interfacial recombination. The impact of the SnO2 interfacial layer was investigated in detail by TEM, hall measurement and electrochemical impedance spectroscopy (EIS) techniques. In addition, our planar-structured triple-layer photoelectrode shows a relatively high transmittance due to its low thickness (~300 nm), which benefits to couple with a solar cell to form a tandem PEC device. The overall PEC performance, especially the photocurrent onset potential (Vonset), were further improved by a reactive-ion etching (RIE) surface etching and electrocatalyst (CoOx) deposition.

  • PDF

Development of Visible-light Responsive $TiO_2$ Thin Film Photocatalysts by Magnetron Sputtering Method and Their Applications as Green Chemistry Materials

  • Matsuoka, Masaya
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.3.1-3.1
    • /
    • 2010
  • Water splitting reaction using photocatalysts is of great interest in the utilization of solar energy [1]. In the present work, visible light-responsive $TiO_2$ thin films (Vis-$TiO_2$) were prepared by a radio frequency magnetron sputtering (RF-MS) deposition method and applied for the separate evolution of $H_2$ and $O_2$ from water as well as the photofuel cell. Special attentions will be focused on the effect of HF treatment of Vis-$TiO_2$ thin films on their photocatalytic activities. Vis-$TiO_2$ thin films were prepared by an RF-MS method using a calcined $TiO_2$ plate and Ar as the sputtering gas. The Vis-$TiO_2$ thin films were then deposited on the Ti foil substrate with the substrate temperature at 873 K (Vis-$TiO_2$/Ti). Vis-$TiO_2$/Ti thin films were immersed in a 0.045 vol% HF solution at room temperature. The effect of HF treatments on the activity of Vis-$TiO_2$/Ti thin films for the photocatalytic water splitting reaction have been investigated. Vis-$TiO_2$/Ti thin films treated with HF solution (HF-Vis-$TiO_2$/Ti) exhibited remarkable enhancement in the photocatalytic activity for $H_2$ evolution from a methanol aqueous solution as well as in the photoelectrochemical performance under visible light irradiation as compared with the untreated Vis-$TiO_2$/Ti thin films. Moreover, Pt-loaded HF-Vis-$TiO_2$/Ti thin films act as efficient and stable photocatalysts for the separate evolution of $H_2$ and $O_2$ from water under visible light irradiation in the presence of chemical bias. Thus, HF treatment was found to be an effective way to improve the photocatalytic activity of Vis-$TiO_2$/Ti thin films. Furthermore, unique separate type photofuel cell was fabricated using a Vis-$TiO_2$ thin film as an electrode, which can generate electrical power under solar light irradiation by using various kinds of biomass derivatives as fuel. It was found that the introduction of an iodine ($I^-/{I_3}^-$) redox solution at the cathode side enables the development of a highly efficient photofuel cell which can utilize a cost-efficient carbon electrode as an alternative to the Pt cathode.

  • PDF

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

Relationship of Glomerular Basement Membrane Alterations to Epithelial Cell Structure and Clinical Parameters in Alport Syndrome (Alport 증후군에서 사구체 기저막의 형태학적 변화와 사구체 상피세포의 구조 및 임상지표와의 관계)

  • Eom, Hye-Jin;Hong, Seung-Jin;Lee, Jae-Seung;Jeong, Hyeon-Joo;Kim, Young-Ki;Kim, Kee-Hyuck
    • Childhood Kidney Diseases
    • /
    • v.14 no.1
    • /
    • pp.22-31
    • /
    • 2010
  • Purpose : This study was performed to evaluate the relationship between glomerular basement membrane (GBM) alterations to epithelial cell (EpC) structure and renal function in Alport Syndrome (AS) patients. Methods : Fifteen patients diagnosed with AS (4-26yrs) were examined. The GBM in AS was categorized as : C1) normal, C2) minor alterations (widening of lamina rara interna or externa without lamina densa change), C3) nonspecific splitting of lamina densa, C4) basket-weaving pattern of lamina densa splitting. The length of each GBM portion along the epithelial side was measured on the systematically obtained electron microscopic photographs. Furthermore to obtain an objective assessment of the degree of glomerular EpC foot process change, the number of slit pores along $10\;{\mu}m$ of peripheral GBM in each category was obtained. Results : The percentage of normal GBM portion (C1) correlated inversely with daily protein excretion (g/day/$m^2$, P<0.05) and sum of the percentage of abnormal GBM portion (C2+C3+C4) had direct correlation with daily protein excretion (g/day/$m^2$, P<0.05). There were no significant relationships between the percentages of other categories of GBM alterations and creatinine clearance or protein excretion. There were no significant relationships between of creatinine clearance in relation to normal GBM(C1) portion as well as that in relation to sum of the percentage of abnormal GBM portion (C2+C3+C4). GBM abnormality did not correlate with age at biopsy. Conclusion : The extent of GBM structural abnormality is related to proteinuria in AS but the epithelial response is uniform even though the GBM ultrastructural lesions are not.

Cell Interference Analysis and Link Budget for Output Power of Base Station in KOREA Environment of Digital MMDS (디지털 MMDS 방식의 국내환경에서 기지국 송신출력에 따른 링크버짓 및 셀 간섭 분석)

  • Cho, Byung-Lok
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.439-444
    • /
    • 2002
  • In this paper, we present both the link budget analysis according to system parameters and the cell coverage according to transmitter power and modulation scheme of digital MMDS among the wireless CATV system methods which is bated on the wireless internet service. Also, in this paper, we present C/I and number of subscriber according to splitting cell. In this paper, the cell coverage of which obtain the results according to both transmitter power from 0dBW to -9dBW and modulation scheme of QPSK, 16QAM and 64QAM based on link budget was analysis for system parameter of digital MMDS was able to provide from maximum 134km to minimum 4.3km. Also, in this paper, the number of subscriber of which obtain the results according to polarization wave, frequency of frequency reuse and C/I in 4. 6 and 8 sectors was able to provide from maximum 5,200DSI to minimum 1,300DSI.