• Title/Summary/Keyword: cell shape

Search Result 1,209, Processing Time 0.028 seconds

A Numerical Study on the Effect of Battery-pack Shape of Electric Vehicle on the Forced Convection Around Battery Cells (전기자동차 배터리 팩 형상이 배터리 셀 주위의 강제대류에 미치는 영향에 대한 수치해석)

  • Kim, Kyo Hyeon;Kim, Tae Wan;Woo, Man Gyeong;Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, the effect of battery-package shape of electric vehicle on the forced convection around a group of battery cells has been numerically investigated. Simulations for the two package shapes with straight/curved ducts have been conducted to examine the two design factors; the maximum temperature and the temperature deviation of a group of cells which influence the cell durability. The simulation of the conjugate heat transfer has been simplified by employing an equivalent thermal conductivity of cell that consists of various materials. It has been found that the maximum temperature and the temperature deviation of curved duct were lower than those of straight duct. Velocity fields have also been examined to describe the temperature distribution of a group of cells and the position of maximum temperature was found to be related to the dead zone of flow field.

  • PDF

Optimization study on fuel cell cathode oxygen flow path for Unmanned Aerial Vehicle using computational visualization (전산 가시화를 통한 무인 항공기용 연료전지 양극 산소 유로 최적화 연구)

  • Jeon, Ji-A;Lee, Jae-Jun;Song, Young-Su;Kim, Min-Su;Kim, Gun Woo;Na, Youngseung;Rhee, Gwang Hoon
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2019
  • Numerical visualization is conducted to confirm the variation of flow characteristics and pressure drop by the shape of channels on the cathode flow path in hydrogen fuel cells for unmanned aerial vehicles(UAVs). Generally, a light-weight fan is commonly used rather than a heavy air compressor at UAVS. However, in case of blower fan, a large pressure drop in the flow path causes the blocking of the oxygen supply to the fuel cell. Therefore, the uniformity of flow inside the cathode has to be achieved by changing the shape of the cathode. The flow channel, the duct shape, and the diameter of the fan are changed to optimize the flow path. As a result, it is confirmed that the optimal flow path can decrease the velocity difference between the center and outer flow by 1.8%. However, It should be noted that the channel size can increase the pressure drop.

The Effect of Obstacle Number, Shape and Blockage Degree in Flow Field of PEMFC on its Performance

  • Zongxi Zhang;Xiang Fan;Wenhao Lu;Jian Yao;Zhike Sui
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.132-151
    • /
    • 2024
  • Proton exchange membrane fuel cell (PEMFC) has received extensive attention as it is the most common hydrogen energy utilization device. This research not only investigated the effect of obstacle number and shape on PEMFC performance, but also studied the effect of the blockage degree in the channel of PEMFC on its performance. It was found that compared with traditional scheme, longitudinally distributed obstacles scheme can significantly promote reactants transfer to catalyst layer, and the blockage degree in the channel effect PEMFC performance most. The scheme with 10 rectangular obstacles in single channel and 60% channel blockage had the best output performance and the most uniform distribution of reactants and products. Obstacle height distribution can significantly affect PEMFC performance, the blockage degree in the whole basin was large, particularly as the channel was blocked to higher degree in region 2 and region 3, higher net power density and better mass transfer effect can be obtained. Among them, the fuel cell with the blockage degree of 40%, 60% and 60% in region 1, region 2 and region 3 have the best PEMFC output performance and mass transfer, the net power density was 29.8% higher than that of traditional scheme.

Comparative Study on the Salivary Gland between Two Species (Achatina fulica and Incilaria fruhstorferi) of the Snails in Stylommatophora ( Mollusca, Gastropoda ) (병안목 달팽이류 두 종간 (Achatina fulica and Incilaria fruhstorferi)의 타액선에 관한 비교 연구)

  • 한종민;장남섭
    • The Korean Journal of Malacology
    • /
    • v.12 no.2
    • /
    • pp.109-121
    • /
    • 1996
  • Histochemical experiment was carry out respectively to confirm the properties of the salis (Achatina fulica and Incilaria fruhstorferi). SDS-PAGE was carried out to compare and invertigate the distribution aspects of protein patterns between the two species. Five types(A, B, F, H and I)of gland cells with four neutral mucopolysaccharide cells and one acid mucopolysaccharide cells and one acid mucopolysaccharide cell were observed in acinous of Achatina fulica, while six types were observed in acinous of Incilaria fruhstorferi: ond acid mucopolysaccharide cell(type-A) and four neutral mucopolysaccharide cells(type-B, C, D and F) and one cell that acid mucopolysaccharide is only mimbrane that surrounded granule(type-E). The results are follows:The thpe-A fland cell is commonly observed between the two species. The type-A gland cell in Achatina fulica possesses a nucleus with a developed heterdchromatin, and the cytoplasm was filled with round granules. The granules were surrounded with an uncertain boundary mimbrane and confirmed with neutral mucopolysaccharides, but is confirmed acid mucopolysaccharide in Incilaria fruhstorferi.The type-B gland cell is obwerved in the two species, too. The type-B gland cell in Achatina fulica was round shaped, and included an evenly alrge nucleus. The uncleoplasm included granules that were confirmed in the neutral mucopolysaccharides of the two species. The type-C and D gland cells exist only in Incilaria fruhstorferi, nucleoplasm was well developed heterochromatins. The type-E gland cell appears in the acinous surrounded the salivary gland of Incilaria fruhstorferi. Thdse granules appear irregular irregular shape and size and the cytoplasm is formed in alveolar. The type-F gland cells are commonly observed in the salivary glands of the two species. They are similar with the type-B gland cell, but the granular shape is comparatively small and irregular, and possess the neutral mucos granules. The type-H gland cells are mainly seen in only Achatina, and in nucleus is a well developed heterochromatin. The cytoplasm is filled with round small granules with acid mucopolysaccharide for alcianophilia observed. The type-I cell was small cell with an irregular shape and only observed in the gland cells of Achatina fulica. The heterochromatins were developed in the nucleus and the granules are not observed in cytoplasm.Secretory ducts of saliva are composed of the interlobular duct and interlobar secretory duct. In Achatina fulica the interlobular duct consists of a simple cuboidal epithelium, while the endothelium of intralobar secretory duct of Incilaria fruhstorferi consists of a simple squamous epithelium and in the cytoplasm is filled with granules(type-G secretory cell). A SDS-PAGE was carried out to confirm that the protein band pattern consist of salivary gland. In conclusions, five more bands in Achatina fulica and three bands in Incilaria fruhstorferi were confirmed in MW<29 kDa. one main band coincides comparatively with both and is between 29-45 kDa. There are four main bands in Achatina fulica and two main bands in Incilaria fruhstorferi between 45-66.5 kDa respectively. The bands in Achatina fulica seem more complex than in incilaria fruhstorferi.

  • PDF

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

Effects of Treatment with the Extract from the Root Bark of Morus alba on the Cell Composition and the Shape Change of Microorganisms (상백피 추출물이 미생물의 균체성분 및 형태 변화에 미치는 영향)

  • 박욱연;성희경;목종수;장동석
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.3
    • /
    • pp.147-153
    • /
    • 1995
  • The ethanol extract from the root bark of Morus alba showed the strongest antimicrobial activity on the growth of almost all the tested microorganisms which were food-borne pathogens and food-related microorganisms. Therefore, fatty acid composition, amino acid composition and shape change of microorganisms treated with the ethanol extract from the root bark of Morus alba were examined. In effects of treatment with the ethanol extract on the fatty acid compositions of B. subtilis, S. aureus and E. coli, fatty aicd compositions such as hexadecanoic acid (16:0) and octadecanoic acid (18:2) of the tested strains were increased but pentadecanoic acid (15:0) heptadecanoic acid (17:0) and acid (16:1) and octadecenoic acid (18:1) of E. coli were decreased. The ethanol extract did not significantly affect the aminn acid composition of the tested strains. Transmission electron micrographs of microorgani는 treated with the ethanol extract exhibited morphological changes that irregularly contracted cell surface in S. aureus and destructed cell walls in B. subtilis and E. coli.

  • PDF

Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm

  • Hye Seon Kang;Jung Jae Park
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.735-741
    • /
    • 2021
  • Objective: To evaluate circularity as a quantitative shape factor of small renal tumor on computed tomography (CT) in differentiating fat-poor angiomyolipoma (AML) from renal cell carcinoma (RCC). Materials and Methods: In 257 consecutive patients, 257 pathologically confirmed renal tumors (either AML or RCC less than 4 cm), which did not include visible fat on unenhanced CT, were retrospectively evaluated. A radiologist drew the tumor margin to measure the perimeter and area in all the contrast-enhanced axial CT images. In each image, a quantitative shape factor, circularity, was calculated using the following equation: 4 x π x (area ÷ perimeter2). The median circularity (circularity index) was adopted as a representative value in each tumor. The circularity index was compared between fat-poor AML and RCC, and the receiver operating characteristic (ROC) curve analysis was performed. Univariable and multivariable binary logistic regression analysis was performed to determine the independent predictor of fat-poor AML. Results: Of the 257 tumors, 26 were AMLs and 231 were RCCs (184 clear cell RCCs, 25 papillary RCCs, and 22 chromophobe RCCs). The mean circularity index of AML was significantly lower than that of RCC (0.86 ± 0.04 vs. 0.93 ± 0.02, p < 0.001). The mean circularity index was not different between the subtypes of RCCs (0.93 ± 0.02, 0.92 ± 0.02, and 0.92 ± 0.02 for clear cell, papillary, and chromophobe RCCs, respectively, p = 0.210). The area under the ROC curve of circularity index was 0.924 for differentiating fat-poor AML from RCC. The sensitivity and specificity were 88.5% and 90.9%, respectively (cut-off, 0.90). Lower circularity index (≤ 0.9) was an independent predictor (odds ratio, 41.0; p < 0.001) for predicting fat-poor AML on multivariable logistic regression analysis. Conclusion: Circularity is a useful quantitative shape factor of small renal tumor for differentiating fat-poor AML from RCC.

Fabrication of Biofuel Cell Roll Using Flexible CNT Nanosheet Substrate (유연한 CNT Nanosheet 기판을 이용한 생체연료전지 Roll 제작)

  • Sung, Jungwoo;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.388-391
    • /
    • 2014
  • The most promising application of the biofuel cells is implantable devices, so the biofuel cells should have an appropriate shape for the vascular vessel. We demonstrated the biofuel cell roll for using in tubes. MWNTs were aggregated by vacuum filtration on a nitrocellulose membrane filter, which was biocompatible and flexible. The MWNT aggregated nitrocellulose membrane used the electrodes of the biofuel cells because it was conductive as well as nanostuructured. Then, the membrane was rolled into the roll shape. The maximum power density of the biofuel cell roll was $7.9{\mu}W/cm^2$ at 153mV and 50 mM glucose. Also, the power density is expected to increase in its practical application if there is flow in the tube, which makes the transportation of fuel easy. The biofuel cell roll contacts with the wall of the tube, so flow in the tube does not disturb. Also, the biofuel cell roll has multi-layers offering more electroactive area.

Immunohistochemical study on the insulin-, glucagon-, somatostatin-, and pancreatic polypeptide secreting cells in Korean native goat (한국재래산양 췌장의 insulin, glucagon, somatostatin 및 pancreatic polypeptide 분비세포에 관한 면역조직화학적 연구)

  • Lee, Heungshik S.;Lee, In-se;Kang, Tae-cheon;Kim, Jin-sang;Yi, Seong-joon
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.1
    • /
    • pp.45-54
    • /
    • 1995
  • Pancreatic endocrine cells containing glucagon, insulin, somatostatin and pancreatic polypeptide were identified in the pancreas of the Korean native goat by using immunohistochemical method. Glucagon immunoreative cells were oval or fusiform in shape and located at the periphery of the pancreatic islets. Insulin immunoreactive cells were round or oval in shape and occupied throughout the pancreatic islets except the small area of the periphery. Somatostatin immunoreative cells were oval and elliptical, and mainly located at the periphery of the pancreatic islets. Some of these cells had a cytoplasmic process. Pancreatic polypeptide immunoreactive cells were elliptical or polyhedral and located at the periphery of the pancratic islets where two or more cells formed a cell cluster. The distribution rates of glucagon, insulin, somatostatin and pancreatic polypeptide immunoreactive cells were 24.4%, 44.3%, 13.2% and 18.1% respectively.

  • PDF

Size-based Separation of Yeast Cell by Surface Acoustic Wave-induced Acoustic Radiation Force (음향방사력을 이용한 효모세포의 크기별 분리)

  • Raihan Hadi Julio;Muhammad Soban Khan;Mushtaq Ali;Ghulam Destgeer;Jinsoo Park
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2023
  • The yeast Saccharomyces cerevisiae (S. cerevisiae) is considered an ideal eukaryotic model and has long been recognized for its pivotal role in numerous industrial production processes. Depending on the cell cycle phases, microenvironment, and species, S. cerevisiae varies in shape and has different sizes of each shape such as singlets, doublets, and clusters. Obtaining high-purity populations of uniformly shaped S. cerevisiae cells is crucial in fundamental biological research and industrial operations. In this study, we propose an acoustofluidic method for separating S. cerevisiae cells based on their size using surface acoustic wave (SAW)-induced acoustic radiation force (ARF). The SAW-induced ARF increased with cell diameter, which enabled a successful size-based separation of S. cerevisiae cells using an acoustofluidics device. We anticipate that the proposed acoustofluidics approach for yeast cell separation will provide new opportunities in industrial applications.