• Title/Summary/Keyword: cell secretion

Search Result 1,179, Processing Time 0.021 seconds

The Role of Protein Kinase C for Prolactin Secretion in Chicken Primary Pituitary Cell Culture (산란계의 뇌하수체 세포배양에서 Prolactin의 생성에 관계하는 Protein Kinase C의 역할)

  • 선상수
    • Korean Journal of Poultry Science
    • /
    • v.23 no.3
    • /
    • pp.113-119
    • /
    • 1996
  • A series of experiments were conducted to investigate the role of protein kinase C (PKC) as a second messenger in vasoactive intestinal peptide (VIP) mediated prolactin secretion. Primary pituitary cells (106 cells/treatment) were separated from laying hens and incubated in M-199 with 5% chicken serum and 5% fetal calf serum. The VIP(0.1 $\pi$M) treatment enhanced prolactin Secretion into media upto 9-fold during 48-h incubation. The phorbol 12-myristate 13-acetate (PMA), a PKG agonist, increased prolactin secretion upto 2-fold at 0.1 nM PMA (P<0.01), and the prolactin secretion was not significantly higher than this concentration. Staurosporine (ST; 1.0$\pi$M) a PKC antagonist, decreased by 70% of 0.1 $\pi$M VIP-stimulated prolactin secretion and by 48% of 10 ${\mu}$M PMA-stimulated prolactin secretion (P<0.01). However, pituitary cell prolactin content did not differ in any treatment (P>0.05). In conclusion, these results indicate that the PKC second messenger system is involved in VIP-stimulated prolactin release in chicken primary pituitary cell culture.

  • PDF

Effect of Sopyung-tang Extract on Insulin Secretion and Gene Expression in RIN-m5F Cells (소평탕(消平湯)이 RIN-m5F 세포에서 인슐린 분비 및 유전자 발현에 미치는 영향)

  • Youn, Sung-Sik;Cho, Chung-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.25-39
    • /
    • 2010
  • Background : At high glucose levels in $\beta$-cells, cell viability and insulin secretion are decreased by glucotoxicity. Sopyung-tang(SPT) had an effect on blood glucose level decrease and antioxidant enzyme activities in streptozotocin-induced diabetic rats. Objectives : This study performed a series of experiment to verify the effects of SPT extract on the cell viability, antioxidant enzyme activities, insulin secretion and insulin mRNA expression at hyperglycemic states of RIN-m5F. Methods : After treatment at various concentrations of SPT added to the RIN-m5F cells, cell viability by MTT assay, free radical-scavenging activity, SOD activity and insulin secretion were measured. Additionally, insulin-related gene expression was measured using real-time RT-PCR. Results : Compared to the control group, SPT extract showed considerable effects on RIN-m5F cell viability, DPPH radical-scavenging activity, superoxide dismutase (SOD) activity, insulin secretion and insulin-related gene expression. Conclusions : This study showed that SPT extract has an effect on $\beta$-cell cell viability, insulin secretion and insulin-related gene expression. Thus, SPT extract may be used for treatment of diabetes and its complications. Further mechanism studies of SPT seem to be necessary on the glucotoxicity and oxidative stress.

Porosome: the Universal Molecular Machinery for Cell Secretion

  • Jena, Bhanu P.
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.517-529
    • /
    • 2008
  • Porosomes are supramolecular, lipoprotein structures at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to release inravesicular contents to the outside during cell secretion. The mouth of the porosome opening to the outside, range in size from 150 nm in diameter in acinar cells of the exocrine pancreas, to 12 nm in neurons, which dilates during cell secretion, returning to its resting size following completion of the process. In the past decade, the composition of the porosome, its structure and dynamics at nm resolution and in real time, and its functional reconstitution into artificial lipid membrane, have all been elucidated. In this mini review, the discovery of the porosome, its structure, function, isolation, chemistry, and reconstitution into lipid membrane, the molecular mechanism of secretory vesicle swelling and fusion at the base of porosomes, and how this new information provides a paradigm shift in our understanding of cell secretion, is discussed.

Putrescine and Cadaverine Enhance Insulin Secretion of Mouse Pancreatic ${\beta}$-cell Line

  • Park, Hyo-Eun;Kim, Jae-Young
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.193-200
    • /
    • 2012
  • We examined the effects of polyamines such as putrescine and cadaverine on the biosynthesis and secretion of insulin in the mouse pancreatic ${\beta}$-cell line, MIN-6. Basal insulin secretion (BIS) and glucose-stimulated insulin secretion (GSIS) from the MIN-6 cells were significantly increased by 20 min- or 24 h-treatment with micromolar concentrations of polyamines. To determine whether the enhancement was due to increase of insulin production by polyamines, we investigated the insulin mRNA and protein production. Both insulin mRNA and protein production were found to be not significantly affected by the polyamine treatment. Next, we examined the expression of several transcription factors (TFs) related to insulin synthesis and secretion in order to identify upstream events responsible for the promotion of insulin secretion of MIN6 cells by polyamines. Of the 6 TFs tested, MafA was induced by treatment of polyamines. MafA mRNA and protein expressions increased with treatment of polyamines. Overall results suggest that cadaverine and putrescine promote the insulin secretion process rather than the insulin biosynthesis from MIN6 cells. Also MafA may be involved in the enhanced insulin secretion process. Further studies are needed to elucidate the underlying mechanisms for promotion of insulin secretion by polyamines.

Signal Transduction Mechanisms Mediating Surfactant Phospholipid Secretion in Isolated Type II Cell (Type II Cell 분리체로부터 Surfactant 인지질의 분비를 매개하는 신호변환 기전)

  • Park, Sung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.123-127
    • /
    • 1996
  • Secretion of surfactant phospholipid can be stimulated by a variety of agonists acting via at least three different signal transduction mechanisms. These include the adenylate cyclase system with activation of cAMP-dependent protein kinase; activation of protein kinase C either directly or subsequent to activation of phosphoinositide-specific phospholipase C and generation of diacylglycerols and inositol trisphosphate; and a third mechanism that involves incresed $Ca^{2+}$ levels and a calmodulin-dependent step. ATP stimulates secretion via all three mechanisms. The protein kinase C pathway is also coupled to phopholipase D which, acting on relatively abundant cellular phospholipids, generates diacylglycerols that further activate protein kinase C. Sustained protein kinase C activation can maintain phosphatidylcholine secretion for a prolonged period of time. It is likely that interactions between the different signaling pathways have an important role in the overall physiological regulation of surfactant secretion.

  • PDF

Hormonal Regulation of Insulin-Like Growth Factor Binding Protein Secretion by a Bovine Mammary Epithelial Cell Line

  • Kim, W.Y.;Chow, J.C.;Hanigan, M.D.;Calvert, C.C.;Ha, J.K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.233-239
    • /
    • 1997
  • A mammary epithelial cell line (MAC-T) established as a model for lactation was utilized to identify and characterize effects of various hormones upon insulin-like growth factor binding protein secretion. Ligand and immunoblot analyses of conditioned media indicated that insulin-like growth factor binding protein-2 was secreted by MAC-T cells. Insulin-like growth factor-I stimulated insulin-like growth factor binding protein-2 secretion in a dose-dependent manner, but prolactin and bovine somatotropin did not alter insulin-like growth factor binding protein-2 secretion. Insulin increased and cortisol decreased insulin-like growth factor binding protein-2 secretion. Effects of insulin-like growth factor-I on insulin-like growth factor binding protein-2 secretion support previous studies using primary cultures of bovine mammary cells and bovine fibroblasts. Effects of cortisol and insulin on insulin-like growth factor binding protein-2 secretion may be explained by changes in protein synthesis. In addition, supraphysiological doses of insulin can cross-react with the insulin-like growth factor-I receptor and stimulate insulin-like growth factor binding protein-2 secretion. MAC-T cells provide a model system to study mechanisms that regulate local insulin-like growth factor-I bioactivity.

Effects of forskolin on secretion of insulin like growth factor-I in the perfused rat liver model (백서 간 관류모델에서 forskolin이 Insulin like growth factor-I의 분비에 미치는 효과)

  • Kang, Chang-won;Lee, Dae-yeol;Lee, Ho-il
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.938-944
    • /
    • 1999
  • The insulin-like growth factor-I(IGF-I) is an important metabolic factor involved in cell growth and metabolism. Although secretion of IGF-I in rat liver is regulated by growth hormone, the effects of forskolin, adenylate cyclase activator, on secretion of IGF-I have not been reported. Therefore, a modified perfused rat liver model was used to investigate the regulatory effects of forskolin on IGF-I secretion in this experiment. The results were summerized as follows : 1. Modified perfused rat liver model was not changed to aspartate aminotransferase(AST), alanine aminotransferase(ALT) and lactic dehydrogenase(LDH) secretion in time. 2. The IGF-I secretion in hepatic cell was increased by forskolin($10^{-5}$, $10^{-6}$ and $10^{-7}M$) in a dose-dependent manner as compared with those of the controls, and significantly increased by $10^{-5}$ and $10^{-6}$ forskolin(p < 0.05). 3. Secretion of glucose in hepatic cell significantly was decreased by $10^{-5}$ forskolin as compared with those of controls(p < 0.05). These results suggest that forskolin may be involved in the regulation of IGF-I secretion in the perfused rat liver.

  • PDF

The regulatory mechanism of insulin like growth factor secretion by high glucose in mesangial cell: involvement of cAMP (Mesangial 세포에서 고포도당에 의한 insulin-like growth factor의 분비조절기전에 관한 연구: cAMP와의 관련성)

  • Heo, Jung-sun;Kang, Chang-won;Han, Ho-jae;Park, Soo-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.563-571
    • /
    • 2003
  • Dysfunction of mesangial cells has been contributed to the onset of diabetic nephropathy. Insulin like growth factors (IGFs) are also implicated in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion in the mesangial cells. Furthermore, the relationship between cAMP and high glucose on the secretion of IGFs was not elucidated. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. Glucose increased IGF-I secretion in a time- (>8 hr) and dose- (>15 mM) dependent manner (p<0.05). Stimulatory effect of high glucose on IGF-I secretion is predominantly observed in 25 mM glucose (high glucose), while 25 mM glucose did not affect cell viability and lactate dehydrogenase release. High glucose also increased IGF-II secretion. The increase of IGF-I and IGF-II secretion is not mediated by osmotic effect, since mannitol and L-glucose did not affect IGF-I and IGF-II secretion. 8-Br-cAMP mimicked high glucose-induced secretion of IGF-I and IGF-II. High glucose-induced stimulation of IGF-I and IGF-II secretion was blocked not by pertussis toxin but by SQ 22536 (adenylate cyclase inhibitor). Rp-cAMP (cAMP antagonist), and myristoylated protein kinase A (PKA) inhibitor amide 14-22 (protein kinase A inhibitor). These results suggest that cAMP/PKA pathways independent of Gi protein may mediate high glucose-induced increase of IGF-I and IGF-II secretion in mesangial cells. Indeed, glucose (>15 mM glucose) increased cAMP formation. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via cAMP/PKA pathway in mesangial cells.

Inhibition of IgM Secretion in Murine B Cell Lymphoma by Hydrogen Peroxide

  • Jang, Eun-Jung;Jo, Sung-Kee;Yoo, Byung-Sun
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.363-367
    • /
    • 2002
  • Reactive of gen species (ROS) contribute to several cellular function and are involved in the regulation of signal transduction, gene expression, and proliferation. In the present study, we investigated the effect of $H_2O_2$ treatment on IgM secretion in LPS-stimulated murine B Iymphoma, CH12.LX. Cells were treated directly With $H_2O_2$ and stimulated with LPS. $H_2O_2$ treatment during 72 h time period inhibited IgM secretion in LPS-stimulated CH12.LX cells in a dose- and time-dependent manners. After treatment with 50 $\mu\textrm{M}$ $H_2O_2$ during 72 h time period, the level of IgM in LPS-stimulated CH12.LX cells was markedly decreased, whereas cell viability was not significantly changed. Addition of $H_2O_2$ concomitantly with LPS, or 12 h post-LPS stimulation, produced a significant inhibition of IgM secretion, Whereas inhibitory effect of $H_2O_2$ on IgM secretion was not observed when added 24 h after LPS stimulation. These findings suggest that $H_2O_2$ can inhibit the secretion of IgM in LPS-stimulated CH15.LX cells, and may alter the events necessary for terminal B cell differentiation.

The roles of PKC-δ on the regulation of insulin-like growth factor(IGF)-I and insulin-Like growth factor binding protein-3 secretion by all-trans retinoic acid in MCF-7 cell (MCF-7 cell에서 all-trans retinoic acid에 의한 insulin-like growth factor-I와 insulin-like growth factor binding protein-3 분비조절에 있어서 PKC-δ의 역할)

  • Lee, Sun-Mi;Kim, Sang-Hoon;Choi, Kwang-Soo;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.97-105
    • /
    • 2006
  • All-trans retinoic acid (AtRA) induces growth inhibition and apoptosis in a variety of tumer cells, including MCF-7 cells. Insulin-like growth factors (IGFs) system has been reported to be associated with the development of cancer. Although MCF-7 cell with AtRA is to be the major stimulus for the cell growth and apoptosis, the mechanism of insulin-like growth factor-I (IGF-I)/insulin-like growth factor binding protein-3 (IGFBP-3) system remains to be elucidated. Thus, this study was conducted to the effect of AtRA on the gene expression and level of IGF-I and IGFBP-3. In addition, we investigated the involvement of PKC-${\delta}$ on the IGF-I and IGFBP-3 secretion in MCF-7 cell. AtRA(${\geq}10^{-7}M$) decreased the IGF-1 secretion and mRNA expressions, but increased IGFBP-3 secretion and mRNA expressions in MCF-7 cells. Especially, the treatment of AtRA at 72 hours caused a significant reduction in the IGF-I secretion and mRNA expressions but increment in IGFBP-3 secretion and mRNA expressions (p < 0.05). $10^{-7}M$ AtRA activated PKC-${\delta}$ that is one among PKC-$\iota$, ${\alpha}$, ${\lambda}$ and ${\delta}$ in MCF-7 cell. Rotllerin, a PKC-${\delta}$ inhibitor, blocked AtRA-induced inhibition of the IGF-I and mRNA expressions, and increase of lGFBP-3 and mRNA expressions in MCF-7 cell. Together, AtRA inhibited the IGF-I secretion and mRNA expressions, but increased IGFBP-3 secretion and mRNA expressions in MCF-7 cell. Furthermore, AtRA-induced alteration of IGF-I, IGFBP-3 secretion, and the gene expressions were mediated via PKC-${\delta}$ activity.