• 제목/요약/키워드: cell movement

검색결과 422건 처리시간 0.032초

백서구치의 교정적 치아이동중 압박측 치주조직의 초기변화에 관한 연구 (AN ELECTRON MICROSCOPIC STUDY ON THE TISSUE CHANGES IN THE PRESSURE ZONES OF RAT MOLAR PERIODONTIUM INCIDENT TO ORTHODONTIC TOOTH MOVEMENT)

  • 구중회;이기수
    • 대한치과교정학회지
    • /
    • 제19권1호
    • /
    • pp.21-44
    • /
    • 1989
  • Incipient changes of the periodontal tissue in the pressure zones of rat molar subjected to the experimental force were studied by the transmission electron microscope. Experimental animals were consisted in 3 control and 21 experimental rats, of which one maxillary first molar was moved buccally with a fixed appliance which were exerting the force of 15 gm. After experimental period of 1 hour, 3 hours, 6 hours, 24 hours, 2 days, 3 days and 7 days, the animal were sacrificed with cardiac perfusion of $2.5\%$ glutaraldehyde in the sodium cacodylate buffer and the experimental teeth with surrounding periodontal structures were processed for electron microscope. At the beginning of the tooth movement, periodontal ligaments of the pressure were compressed and collagenous fibers were arranged parallel to the root of the teeth and cell free zones in company with cell necrosis were followed. Cell free zones at the periodontal ligaments appeared in the 3 hour survival group, and getting severe with time lapse it became widespread in 2-3 day survival group and undermining bone resorption as a healing process was observed in 7 day survival group. Dilatation of mitochondria and swelling of the rER in the fibroblast and other connective tissue cells in the periodontal ligament were observed in the 3 hour survival group, which were characteristics of the incipient changes in the compressed periodontal ligament. Dilatation of nuclear membrane and pyknosis were followed by the destruction of the nucleus and cell membrane. There were no evidence in cell damage or necrosis of the alveolar bone adjacent to the hyalinized area of periodontal ligaments.

  • PDF

Particle-in-cell 기법을 이용한 전자기장내 플라즈마 입자의 거동 해석 (Numerical Analysis on Plasma Particles inside Electro-magnetic Field Using Particle-in-cell Method)

  • 한두희;조민경;신준수;성홍계;김수겸
    • 한국항공우주학회지
    • /
    • 제45권11호
    • /
    • pp.932-938
    • /
    • 2017
  • 플라자마의 거동을 오일러리안 격자와 라그랑지안 입자를 혼합하여 해석하는 Particle-in-cell 기법을 적용하여 간략화된 홀추력기를 해석하였다. 본 연구는 중성입자, 이온입자 뿐만 아니라 전자도 라그랑지안 기법으로 개별추적 계산하기 때문에 message passing interface 기법을 이용해 대용량 계산이 가능한 병렬클러스터링을 적용하였다. 계산에 앞서 일정한 벡터의 자기장에서 전자군의 나선형 거동을 해석하였고, 절대해와 일치함을 확인하여 코드를 검증하였다. 실린더 내부에 반경방향으로 일정한 자기장과 축방향으로 일정한 전기장을 고정시켜 플라즈마의 거동을 PIC 모델을 이용하여 해석하였다. 반응 실린더 내부에 전자가 로렌츠 힘에 의해 이중나선을 그리며 구속되는 현상이 잘 포착되었고, 고속 회전하는 전자와 주입된 중성입자가 충돌하여 이온화 되었고, 대전된 입자가 축방향의 전기장에 의해 급 가속하는 현상 또한 잘 모사되어 플라즈마의 플룸 거동을 모사하였다.

자기조직화 신경망을 이용한 셀 형성 문제의 기계 배치순서 결정 알고리듬 (Machine Layout Decision Algorithm for Cell Formation Problem Using Self-Organizing Map)

  • 전용덕
    • 산업경영시스템학회지
    • /
    • 제42권2호
    • /
    • pp.94-103
    • /
    • 2019
  • Self Organizing Map (SOM) is a neural network that is effective in classifying patterns that form the feature map by extracting characteristics of the input data. In this study, we propose an algorithm to determine the cell formation and the machine layout within the cell for the cell formation problem with operation sequence using the SOM. In the proposed algorithm, the output layer of the SOM is a one-dimensional structure, and the SOM is applied to the parts and the machine in two steps. The initial cell is formed when the formed clusters is grouped largely by the utilization of the machine within the cell. At this stage, machine cell are formed. The next step is to create a flow matrix of the all machine that calculates the frequency of consecutive forward movement for the machine. The machine layout order in each machine cell is determined based on this flow matrix so that the machine operation sequence is most reflected. The final step is to optimize the overall machine and parts to increase machine layout efficiency. As a result, the final cell is formed and the machine layout within the cell is determined. The proposed algorithm was tested on well-known cell formation problems with operation sequence shown in previous papers. The proposed algorithm has better performance than the other algorithms.

Histologic effects of intentional-socket-assisted orthodontic movement in rabbits

  • Yu, Ji-Yeon;Lee, Won;Park, Jae Hyun;Bayome, Mohamed;Kim, Yong;Kook, Yoon-Ah
    • 대한치과교정학회지
    • /
    • 제42권4호
    • /
    • pp.207-217
    • /
    • 2012
  • Objective: This study aimed to evaluate the effect of an intentionally created socket on bone remodeling with orthodontic tooth movement in rabbits. Methods: Eighteen male rabbits weighing 3.8 - 4.25 kg were used. An 8-mm deep and 2-mm wide socket was drilled in the bone 1 mm mesial to the right mandibular first premolar. The left first premolar was extracted to serve as an extraction socket. A traction force of 100 cN was applied to the right first premolar and left second premolar. Sections were obtained at the middle third of the moving tooth for both the drilled and extraction sockets and evaluated with hematoxylin and eosin staining and immunohistochemical analyses. The amount of tooth movement and tartrate-resistant acid phosphatase (TRAP)-positive cell count were compared between the 2 groups using the Mann-Whitney U test. Results: At week 2, the distance of tooth movement was significantly higher in the intentional socket group (p < 0.05) than in the extraction socket group. The number of TRAP-positive cells decreased in week 2 but increased in week 3 (p < 0.05). However, there were no significant differences between the groups. Furthermore, results of transforming growth factor (TGF)-${\beta}$ staining revealed no significant differences. Conclusions: The intentional socket group showed greater distance of tooth movement than did the extraction socket group at week 2. Osteoclast counts and results of immunohistochemical analyses suggested elevated bone remodeling in both the groups. Thus, osteotomy may be an effective modality for enhancing tooth movement in orthodontic treatment.

백서 삼차신경절내 신경세포체의 치아이동에 따른 CGRP 면역염색성의 변화 (Changes of CGRP immunoreactivity in rat trigeminal ganglion neurons during tooth movement)

  • 박효상;박국필;성재현
    • 대한치과교정학회지
    • /
    • 제27권4호
    • /
    • pp.607-621
    • /
    • 1997
  • 이 연구의 목적은 중추신경계에서는 동통의 전달을 조절하며 말초조직에서는 혈관 이완, 면역체계의 조절, 탐식기능 조절 등의 염증에 관여되며 골 생성에도 관여하여 치아이동시 중요한 기능을 할 것으로 추측되고 있는 CGRP의 생성 장소인 삼차신경절내의 세포체의 크기에 따른 CGRP면역 반응성의 변화를 관찰하여 삼차 신경절내 CGRP면역양성을 띄는 각 크기의 세포들의 치아이동의 시간 경과에 따른 반응을 밝혀보고자 하는 것이다. 생후 9 주령의 Sprague-Dawley계 백서 30 마리를 정상 대조군 6 마리, 3 시간 교정력 적용군 5 마리, 12 시간군 4마리, 1 일군 5마리, 3 일군 5 마리, 7 일군 5 마리로 나누어 실험군은 각 해당 시간동안 상악 우측 제 1대구치에30gm내외의 교정력을 가한 후 희생시켰다. 희생시킨 백서의 삼차 신경절을 적출 하여 냉동 절편을 형성한 후 토끼의 항체를 이용하여 면역화학 염색을 시행하였다. 삼차 신경절의 CGRP 면역양성 신경세포체를 크기에 따라 소형 ($20{\mu}m$ 미만), 중형($20-35{\mu}m$), 대형($35{\mu}m$ 초과)으로 나누어 교정력 적용시간에 따른 변화를 관찰하였다. 1. 삼차 신경절내 전 신경세포체중 CGRP면역양성 신경세포체가 차지하는 비율은 정상 대조군이 33.0%였으며 교정력 적용후 1 일 후에는 24.5%로 감소하였으나 7 일 후에는 41.8%로 증가하였다. 2. 정상 대조군에서 CGRP 면역양성 신경세포체중 소형, 중형, 대형은 각각 51.4%, 44.0%, 4.7%였다. 3. 소형의 CCRP 면역양성 신경세포체는 3시간, 12시간 군에서 높게 나타났다. 4. 중형의 CGRP면역양성 신경세포체는 3일, 7일군에서 대형의 CGRP면역양성 신경세포체는 7 일군에 높게 나타났다. 위를 종합하여 볼 때 치아이동 초기에는 CGRP 면역양성 신경세포체중 소형의 세포가, 후기에는 중형, 대형의 세포가 반응한다는 것을 알 수 있었다.

  • PDF

로봇을 이용한 필라멘트 와인딩 셀에 관한 연구 (robotic cell for the filament winding)

  • 최경현;김성청
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1165-1168
    • /
    • 1995
  • This paper describes the evaluation of a robot based filament winding cell consisting of an industrial robot (ASEA IRB 6/2) and an in-house fabricated mandrel drive mechanism, both being coordinated by a personal computer. As in many manufacturing processes, tradeoffs exist between accuracy and speed. The accuracy versus speed relationships of the robotic winding cell were experimentally determined for discrete, fine and medium movement modes while traversing a segmented delivery eye path for a cylindrical mandrel in three configurations (in-line, offset and angled with respect to the axis of rotation). the results show that the robot winding cell is appropriate for very accurate winding of fibre strands if the mandrel axis is concentric with the mandrel drive axis and the discrete mode(i.e. low speed) of the robot is used.

  • PDF

Near-infrared (NIR) 영상기법을 이용한 생체 내 수지상세포의 이동 (In vivo Dendritic Cell Migration Tracking Using Near-infrared (NIR) Imaging)

  • 이준호;정남철;이은계;임대석
    • KSBB Journal
    • /
    • 제27권5호
    • /
    • pp.295-300
    • /
    • 2012
  • Matured dendritic cells (DCs) begin migration with their release from the bone marrow (BM) into the blood and subsequent traffic into peripheral lymphoid and non-lymphoid tissues. Throughout this long movement, migrating DCs must apply specialized skills to reach their target destination. Non-invasive in vivo cell-tracking techniques are necessary to advance immune cell-based therapies. In this study, we used a DiD cell-tracking solution for in vivo dendritic cell tracking in naive mice. We tracked DiD (non-invasive fluorescence dye)-labeled mature dendritic cells using the Near Infrared (NIR) imaging system in normal mice. We examined the immunophenotype of DiD-labeled cells compared with non-labelled mature DCs, and obtained time-serial images of NIR-DC trafficking after mouse footpad injection. In conclusion, we confirmed that DiD-labeled DCs migrated into the popliteal lymph node 24 h after the footpad injection. Here, these data suggested that the cell tracking system with the stable fluorescence dye DiD was useful as a cell tracking tool to advance dendritic cell-based immunotherapy.

곤충의 시각 신경망 기반 충돌감지 기술의 효율적인 VLSI 구조 설계 (Design of an Efficient VLSI Architecture for Collision Detection Based on Insect's Visual Interneuron)

  • 정수용;이재현;송덕용;박태근
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1671-1677
    • /
    • 2018
  • In this research, the collision detection system based on insect's visual interneuron has been designed. The lobula giant movement detector (LGMD) corresponds to the movement value that increases in direct collision process. If the collision is detected by the LGMD only, it could generate a crash warning even in a non-collision situation, resulting in a lot of false alarms. Directionally sensitive movement detectors (DSMD) are directionally sensitive algorithm based on the elementary movement detectors (EMD) in four directions (up, down, left, and right). In this paper, we propose an efficient VLSI architecture for a realtime collision detection system that is robust to the surrounding environment while improving accuracy. The proposed architecture is synthesized with Dongbu Hightech 110nm standard cell library and shows 333MHz of maximum operating frequency and requires 8400 gates with about 16.5KB of internal memories.

Compressive force regulates ephrinB2 and EphB4 in osteoblasts and osteoclasts contributing to alveolar bone resorption during experimental tooth movement

  • Hou, Jianhua;Chen, Yanze;Meng, Xiuping;Shi, Ce;Li, Chen;Chen, Yuanping;Sun, Hongchen
    • 대한치과교정학회지
    • /
    • 제44권6호
    • /
    • pp.320-329
    • /
    • 2014
  • Objective: To investigate the involvement of ephrinB2 in periodontal tissue remodeling in compression areas during orthodontic tooth movement and the effects of compressive force on EphB4 and ephrinB2 expression in osteoblasts and osteoclasts. Methods: A rat model of experimental tooth movement was established to examine the histological changes and the localization of ephrinB2 in compressed periodontal tissues during experimental tooth movement. RAW264.7 cells and ST2 cells, used as precursor cells of osteoclasts and osteoblasts, respectively, were subjected to compressive force in vitro. The gene expression of EphB4 and ephrinB2, as well as bone-associated factors including Runx2, Sp7, NFATc1, and calcitonin receptor, were examined by quantitative real-time polymerase chain reaction (PCR). Results: Histological examination of the compression areas of alveolar bone from experimental rats showed that osteoclastogenic activities were promoted while osteogenic activities were inhibited. Immunohistochemistry revealed that ephrinB2 was strongly expressed in osteoclasts in these areas. Quantitative real-time PCR showed that mRNA levels of NFATc1, calcitonin receptor, and ephrinB2 were increased significantly in compressed RAW264.7 cells, and the expression of ephrinB2, EphB4, Sp7, and Runx2 was decreased significantly in compressed ST2 cells. Conclusions: Our results indicate that compressive force can regulate EphB4 and ephrinB2 expression in osteoblasts and osteoclasts, which might contribute to alveolar bone resorption in compression areas during orthodontic tooth movement.