• Title/Summary/Keyword: cell migration rate

Search Result 94, Processing Time 0.027 seconds

Inhibitory Effects on Human Breast Cancer Cells Migration of Small Black Bean according to the Cooking Methods (조리방법을 달리한 쥐눈이콩의 인체유방암세포 이동성 억제 효과)

  • Shin, Jihun;Joo, Nami
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.728-734
    • /
    • 2017
  • After being subjected to different cooking methods, small black beans (Rhynchosia nulubilis) were investigated in order to assess the effects of the retained bioactive compounds. Using uncooked, pan broiled, boiled, steamed, and pressure cooked beans, the inhibitory effects of MCF-7 cell migration were evaluated at protein concentrations of 40, 160, and $640{\mu}m/mL$, using the Boyden's chamber assay. All protein concentrations (40, 160, and $640{\mu}m/mL$) of pan broiled beans showed significant reduction (59.83, 32.48, and 21.37%, respectively) in the rate of cell migration to the lower chambers (p-value less than 0.001). Estimated cell migration rates correlated to the exponential decay between experimentally measured cell migration rates and converted samples. The range of estimated cell migration rate for each 100 mg/mL of cooked sample was as follows: pan broiled (21.16%), boiled (22.48%), steamed (22.48%), pressure cooked (29.52%), and uncooked (35.03%) beans. Our study indicated that selective modifications of cooking methods for small black beans, such as pan broiling, ameliorated the inhibitory effects of MCF-7 cell migration. This suggests that optimized cooking methods increase the nutritional contents of the cooked food.

Role of Non-Thermal DBD Plasma on Cell Migration and Cell Proliferation in Wound Healing

  • Ali, Anser;Lee, Seung Hyun;Kim, Yong Hee;Uhm, Han Sup;Choi, Eun Ha;Park, Bong Joo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.526-526
    • /
    • 2013
  • Plasma technology isbeing developed for a range of medical applications including wound healing. However, the effect of plasma on many cells and tissues is unclear. Cell migration and cell proliferation are very important biological processes which are affected by plasma exposure and might be a potential target for plasma therapy during wound healing treatment. In this study, we confirmed the plasma exposure time and incubation time after plasma treatment in skin fibroblast (L-929 cells) to evaluate the optimal conditions forplasma exposure to the cell in-vitro. In addition, we used a scratch method to generate artificial wound for evaluating the cell migration by plasma treatment. Where, the cells were treated with plasma and migration rate was observed by live-cell imaging device. To find the cell proliferation, cell viability assay was executed. The results of this study indicate the increased cell proliferation and migration on mild plasma treatment. The mechanisms for cell migration and cell proliferation after plasma treatment for future studies will be discussed.

  • PDF

EFFECTS OF UNIFORM SHEAR STRESS ON THE MIGRATION OF VASCULAR ENDOTHELIAL CELL (균일한 전단응력에 의한 혈관내피세포의 운동성 변화)

  • Shin, Jennifer H.;Song, Suk-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1404-1408
    • /
    • 2008
  • The migration and proliferation of vascular endothelial cells (VEC), which play an important role in vascular remodeling, are known to be regulated by hemodynamic forces in the blood vessels. When shear stresses of 2, 6, 15 dynes/$cm^2$ are applied on mouse micro-VEC in vitro, cells surprisingly migrate against the flow direction at all conditions. While higher flow rate imposes more resistance against the cells, reducing their migration speed, the horizontal component of the velocity parallel to the flow increases with the flow rate, indicating the higher alignment of cells in the direction parallel to the flow at a higher shear stress. In addition, cells exhibit substrate stiffness and calcium dependent migration behavior, which can be explained by polarized remodeling in the mechanosensitive pathway under shear stress.

  • PDF

Dexamethasone Disrupts Cytoskeleton Organization and Migration of T47D Human Breast Cancer Cells by Modulating the AKT/mTOR/RhoA Pathway

  • Meng, Xian-Guo;Yue, Shou-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10245-10250
    • /
    • 2015
  • Background: Glucocorticoids are commonly co-administered with chemotherapy to prevent drug-induced allergic reactions, nausea, and vomiting, and have anti-tumor functions clinically; however, the distinct effects of GC on subtypes of tumor cells, especially in breast cancer cells, are still not well understood. In this study, we aimed to clarify the effect of GC on subtypes of T47D breast cancer cells by focusing on apoptosis, cell organization and migration, and underluing molecular mechanisms. Materials and Methods: The cell scratch test was performed to observe the cell migration rate in T47D cells treated with dexamethasone (Dex). Hoechst and MTT assays were conducted to detect cell survival and rhodamine-labeled phalloidin staining to observe cytoskeleton dynamics. Related factors in the AKT/mTOR pathway were determined by Western blotting. Results: Dex treatment could effectively inhibit T47D breast cancer cell migration with disruption of the cytoskeletal dynamic organization. Moreover, the effect of Dex on cell migration and cytoskeleton may be mediated by AKT/mTOR/RhoA pathway. Although Dex inhibited T47D cell migration, it alone may not induce cell apoptosis in T47D cells. Conclusions: Dex in T47D human breast cancer cells could effectively inhibit cell migration by disrupting the cytoskeletal dynamic organization, which may be mediated by the AKT/mTOR/RhoA pathway. Our work suggests that glucocorticoid/Dex clinical use may prove helpful for the treatment of breast cancer metastasis.

Keratinocyte Migration in a Three-Dimensional In Vitro Wound Healing Model Co-Cultured with Fibroblasts

  • Iyer, Kritika;Chen, Zhuo;Ganapa, Teja;Wu, Benjamin M.;Tawil, Bill;Linsley, Chase S.
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.721-733
    • /
    • 2018
  • BACKGROUND: Because three-dimensional (3D) models more closely mimic native tissues, one of the goals of 3D in vitro tissue models is to aid in the development and toxicity screening of new drug therapies. In this study, a 3D skin wound healing model comprising of a collagen type I construct with fibrin-filled defects was developed. METHODS: Optical imaging was used to measure keratinocyte migration in the presence of fibroblasts over 7 days onto the fibrin-filled defects. Additionally, cell viability and growth of fibroblasts and keratinocytes was measured using the $alamarBlue^{(R)}$ assay and changes in the mechanical stiffness of the 3D construct was monitored using compressive indentation testing. RESULTS: Keratinocyte migration rate was significantly increased in the presence of fibroblasts with the cells reaching the center of the defect as early as day 3 in the co-culture constructs compared to day 7 for the control keratinocyte monoculture constructs. Additionally, constructs with the greatest rate of keratinocyte migration had reduced cell growth. When fibroblasts were cultured alone in the wound healing construct, there was a 1.3 to 3.4-fold increase in cell growth and a 1.2 to 1.4-fold increase in cell growth for keratinocyte monocultures. However, co-culture constructs exhibited no significant growth over 7 days. Finally, mechanical testing showed that fibroblasts and keratinocytes had varying effects on matrix stiffness with fibroblasts degrading the constructs while keratinocytes increased the construct's stiffness. CONCLUSION: This 3D in vitro wound healing model is a step towards developing a mimetic construct that recapitulates the complex microenvironment of healing wounds and could aid in the early studies of novel therapeutics that promote migration and proliferation of epithelial cells.

New Insights into 4-Amino-2-tri-fluoromethyl-phenyl Ester Inhibition of Cell Growth and Migration in the A549 Lung Adenocarcinoma Cell Line

  • Wang, Hao;Gui, Shu-Yu;Chen, Fei-Hu;Zhou, Qing;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7265-7270
    • /
    • 2013
  • Objective: The present study was designed to investigate the probable mechanisms of synthetic retinoid 4-amino-2-tri-fluoromethyl-phenyl ester (ATPR) inhibition of the proliferation and migration of A549 human lung carcinoma cells. Materials and Methods: After the A549 cells were treated with different concentrations of ATPR or all-trans retinoic acid (ATRA) for 72 h, scratch-wound assays were performed to assess migration. Immunofluorescence was used to determine the distribution of CAV1 and $RXR{\alpha}$, while expression of CAV1, MLCK, MLC, P38, and phosphorylation of MLC and P38 were detected by Western blotting. Results: ATPR could block the migration of A549 cells. The relative migration rate of ML-7 group had significantly decreased compared with control group. In addition, ATPR decreased the expression of a migration related proteins, MLCK, and phosphorylation of MLC and P38. ATPR could also influence the expression of RARs or RXRs. At the same time, CAV1 accumulated at cell membranes, and $RXR{\alpha}$ relocated to the nucleus after ATPR treatment. Conclusions: Caveolae may be implicate in the transport of ATPR to the nucleus. Change in the expression and distribution of $RXR{\alpha}$ may be implicated in ATPR inhibition of A549 cell proliferation. The mechanisms of ATPR reduction in A549 cell migration may be associated with expression of MLCK and phosphorylation of MLC and P38.

A Possible Physiological Role of Caspase-11 During Germinal Center Reaction

  • Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.127-136
    • /
    • 2008
  • Caspase-11 has been known as a dual regulator of cytokine maturation and apoptosis. Although the role of caspase-11 under pathological conditions has been well documented, its physiological role has not been studied much. In the present study, we investigated a possible physiological function of caspase-11 during immune response. In the absence of caspase-11, immunized spleen displayed increased cellularity and abnormal germinal center structure with disrupted microarchitecture. The rate of cell proliferation and apoptosis in the immunized spleen was not changed in the caspase-11-deficient mice. Furthermore, the caspase-11-deficient peritoneal macrophages showed normal phagocytotic activity. However, caspase-11-/-splenocytes and macrophages showed defective migrating capacity. The dysregulation of cell migration did not seem to be mediated by caspase-3, interleukin-$1{\alpha}$ or interleukin-$1{\beta}$ which acts downstream of caspase-11. These results suggest that a direct regulation of immune cell migration by caspase-11 is critical for the formation of germinal center microarchitecture during immune response. However, humoral immunity in the caspase-11-deficient mice was normal, suggesting the formation of germinal center structure is not essential for the affinity maturation of the antibodies.

Identification of boundary migration during the wound healing through the visualization of cell migrations (세포 운동 가시화를 통한 상처 치유 과정 내 경계 이동의 규명)

  • Jeong, Hyuntae;Lee, Jaesung;Shin, Jennifer Hyunjong
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.10-17
    • /
    • 2020
  • The curvature of wound boundaries has been identified as a key modulator that determines a type of force responsible for cell migration. While several studies report how certain curvatures of the boundary correlate with the rate at which the wound closes, it remains unclear how these curvatures are spatiotemporally formed to regulate the healing process. We investigated the dynamic changes in the boundary curvatures by visualizing cell migration patterns. Locally, cells at the convex boundary continuously move forward with transmitting kinetic responses behind to the cells away from the boundary, and cells at the concave boundary exhibit dramatic contracting motion, like a purse-string, when they accumulate enough negative curvatures to gain the thrust toward the void. Globally, the dynamics of boundary geometries are controlled by the diffusive flow of cells driven by the density gradient between the wound area and the cell layer.

Effects of TESTIN Gene Expression on Proliferation and Migration of the 5-8F Nasopharyngeal Carcinoma Cell Line

  • Zhong, Zhun;Zhang, Fei;Yin, Shu-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2555-2559
    • /
    • 2015
  • Purpose: To investigate effects of the TESTIN (TES) gene on proliferation and migration of highly metastatic nasopharyngeal carcinoma cell line 5-8F and the related mechanisms. Materials and Methods: The target gene of human nasopharyngeal carcinoma cell line 5-8F was amplified by PCR and cloned into the empty plasmid pEGFP-N1 to construct a eukaryotic expression vector pEGFP-N1-TES. This was then transfected into 5-8F cells. MTT assays, flow cytometry and scratch wound tests were used to detect the proliferation and migration of transfected 5-8F cells. Results: A cell model with stable and high expression of TES gene was successfully established. MTT assays showed that the OD value of 5-8F/TES cells was markedly lower than that of 5-8F/GFP cells and 5-8F cells (p<0.05). Flow cytometry showed that the apoptosis rate of 5-8F/TES cells was prominently increased compared with 5-8F/GFP cells and 5-8F cells (p<0.05). In vitro scratch wound assays showed that, the width of the wound area of 5-8F/TES cells narrowed slightly, while the width of the wound area of 5-8F/ GFP cells and 5-8F cells narrowed sharply, suggesting that the TES overexpression could inhibit the migration ability. Conclusions: TES gene expression remarkably inhibits the proliferation of human nasopharyngeal carcinoma cell line 5-8F and reduces its migration in vitro. Thus, it may be a potential tumor suppressor gene for nasopharyngeal carcinoma.

A Novel All-trans Retinoid Acid Derivative N-(3-trifluoromethyl-phenyl)-Retinamide Inhibits Lung Adenocarcinoma A549 Cell Migration through Down-regulating Expression of Myosin Light Chain Kinase

  • Fan, Ting-Ting;Cheng, Ying;Wang, Yin-Feng;Gui, Shu-Yu;Chen, Fei-Hu;Zhou, Qing;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7687-7692
    • /
    • 2014
  • Aim: To observe the effects of a novel all-trans retinoid acid (ATRA) derivative, N-(3-trifluoromethyl-phenyl)-retinamide (ATPR), on lung adenocarcinoma A549 cells and to explore the potential mechanism of ATPR inhibiting of A549 cell migration. Materials and Methods: The cytotoxicity of ATRA and ATPR on A549 cells was assessed using MTT assay. Wound healing assays were used to analyze the influences of ATRA, ATPR, ML-7 (a highly selective inhibitor of myosin light chain kinase (MLCK)), PMA (an activator of MAPKs) and PD98059 (a selective inhibitor of ERK1/2) on the migration of A549 cells. Expression of MLCK and phosphorylation of myosin light chain (MLC) were assessed by Western blotting. Results: ATRA and ATPR inhibited the proliferation of A549 cells in a dose- and time-dependent manner, and the effect of ATPR was much more remarkable compared with ATRA. Relative migration rate and migration distance of A549 cells both decreased significantly after treatment with ATPR or ML-7. The effect on cell migration of PD98059 combining ATPR treatment was more notable than that of ATPR alone. Moreover, compared with control groups, the expression levels of MLCK and phosphorylated MLC in A549 cells were both clearly reduced in ATRA and ATPR groups. Conclusions: ATPR could suppress the migration and invasion of A549 cells, and the mechanism might be concerned with down-regulating the expression of MLCK in the ERK-MAPK signaling pathway, pointing to therapeutic prospects in lung cancer.