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Abstract 

The migration and proliferation of vascular endothelial cells (VEC), which play an important role in 
vascular remodeling, are known to be regulated by hemodynamic forces in the blood vessels. When shear 
stresses of 2, 6, 15 dynes/cm2 are applied on mouse micro-VEC in vitro, cells surprisingly migrate against the 
flow direction at all conditions. While higher flow rate imposes more resistance against the cells, reducing 
their migration speed, the horizontal component of the velocity parallel to the flow increases with the flow 
rate, indicating the higher alignment of cells in the direction parallel to the flow at a higher shear stress. In 
addition, cells exhibit substrate stiffness and calcium dependent migration behavior, which can be explained 
by polarized remodeling in the mechanosensitive pathway under shear stress. 

1. INTRODUCTION 

The vascular endothelium forms a continuous 
monolayer lining of the luminal surface of the 
cardiovascular system, providing a structural and 
communicational interface between the circulating blood 
and underlying tissue. Vascular endothelial cells (VECs) 
are continuously exposed to hemodynamic forces such as 
the tensile stress of blood vessel dilatation and hydraulic 
pressure and shear stress from blood flow as well as 
biochemical stimuli from the neighboring cells and blood 
cells (1).  

Atherosclerosis, one of the most common 
cardiovascular diseases, is known to develop in specific 

regions of arterial trees with abnormal blood flow 
patterns and lower shear stress than normal (1, 2). In 
addition, recent research shows that shear stress due to 
abnormal flow induces significant changes in the 
structure and function of endothelial cells, which include 
changes in gene and protein expression, cytoskeleton 
arrangement, proliferation rate, cell migration, and 
apoptosis (3). Therefore, proper shear stress conditions 
are essential for VEC to keep their innate characteristics 
expressed in morphological and physiological behavior; 
also, shear stress can be a main key of cardiovascular 
disease. 

In this research, we first develop a parallel plate flow 
chamber which allows the application of a desired shear 
stress on the cultured VEC. It is designed based on three-
dimensional computational fluid dynamics (3D-CFD) 
analysis. To apply the desired shear stress on the VEC 
monolayer, the flow chamber system is designed to 
minimize undesired pulsation due to peristaltic pumping 
and to maintain essential cell culture conditions. 
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3. RESULTS 

3.1 Optimization of Parallel Plate Flow Chamber 
The most important part in this system is the parallel 

plate flow chamber. To find the optimal design for our 
cell monolayer plated flow chamber, four possible 
features, based on inlet and outlet configurations, are 
considered: whether the inlet and outlet are situated 
horizontally or vertically with respect to the flow 
chamber, and whether the inlet and outlet feature a 
diffuser and converging duct. By three-dimensional 
computational fluid dynamics analysis, Fluent 6.0, four 
types of models are evaluated. 

Simulation of shear stress distribution in a moderate 
flow rate (Q=60ml/min) condition are performed for 
validation of models. According to symmetry, half of the 
flow chamber is taken as the computational fluid 
dynamics simulation. When the flow rate is increased, 
shear stress on the central region is much higher than on 
the side region in the horizontal inlet model compared to 
the vertical inlet model. This non-uniform shear stress 
field can be explained by observing the path line in the 
flow chamber. Path lines are colored from blue to red as 
time passes. In the horizontal inlet model, when the flow 
rate is increased, the water inlet behaves like a water jet 
and the water is not well dispersed in contrast to 
dispersion in the vertical inlet model. Moreover, the 
presence of a converging duct is helpful for a more 
uniform path line near the outlet. Therefore, we decided 
on the model which features a vertical inlet and outlet 
with converging ducts to ensure a uniform shear stress 
field inside the flow chamber. In addition, the flow 
chamber is changed to vertical multiple outlets to 
prevent vortex flow in converging ducts and is bent into 
an L-shape to extend the effective length of the chamber 
and minimize the inlet transient region effect. After 
detail modifications, the optimized flow chamber design 
is developed as shown in Fig. 2. 

In a computational fluid dynamic simulation, wall 
shear stress is fully proportional to flow rate as the 
equation of τ (dyne/cm2) = 0.0520 × Q (ml/min). The 
coefficient in this equation depends on the geometry of 
the flow chamber as shown in Eq. (1), which is derived 
by the parallel plate flow model (4). The uniform shear 
stress area of this system is substantially larger than 

other systems (5-8), 75×50mm2 at minimum. Thus, we 
can guarantee a large and uniform shear stress region for 
conventional molecular biology work. 
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Eq. (1)

 
(

wτ : average wall shear stress, μ : viscosity, 

u : velocity in parallel plate function of height, 
Q : volume flow rate, b : width of chamber, 

h : height of chamber) 
 

3.2 Shear stress effects on cell motility 
Using the shear stress system, the shear stress effects 

on VEC migration have been studied as a function of 
time under various flow conditions. The migration 
velocity in parallel (VX) and perpendicular (VY) to the 
direction of flow are calculated from the time-lapse 
images. Surprisingly, most cells tend to migrate against 
the flow direction when shear stress is applied for 16 
hours. This directional migration of cells becomes 
remarkable as the magnitude of shear stress increases. 
Moreover, while the average velocity in the direction 
parallel to the flow increases with the flow, the average 
speed decreases as the applied shear stress increases (Fig. 
3). It means that higher flow rate applied more resistance 
against cell migration speed, but the direction of cell 
motility is more aligned to the flow direction. Trajectory 
of cells shows that the cell migration is strongly oriented 
parallel to the flow direction as the applied shear stress 
increases. Cells tend to migrate in random direction 
initially and orient themselves in the direction against the 
flow as time passes. 

 

 
Fig. 2 Path line result of the final model simulation of 
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5. CONCLUSION 

By the experimental results as shown above, the shear 
stress system is successfully developed to maintain 
physiological conditions such as pH, temperature and 
shear stress and to apply steady and uniform shear stress 
to established cell monolayer. Moreover we observed 
that mechanical stimulus mediated by flow can affect the 
migration behaviors of vascular endothelial cell. Higher 
flow rate applied more resistance against cell migration 
speed, but the direction of cell motility is more aligned to 
the flow direction. In addition, cell polarity, but not the 
speed of movement, depends on calcium ion under shear 
stress condition. Moreover, cells tend to migrate anti-
parallel to the flow direction as the substrate stiffness 
decreases. These unusual phenomena can be explained 
by polarized remodeling in the mechano-sensitive 
pathway under shear stress. The exact mechanisms for 
these interesting behaviors are still under investigation 
with the signaling pathway related to cytoskeleton. 
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