• 제목/요약/키워드: cell migration

검색결과 1,174건 처리시간 0.023초

Pak1/LIMK1/Cofilin Pathway Contributes to Tumor Migration and Invasion in Human Non-Small Cell Lung Carcinomas and Cell Lines

  • Jang, In-Seok;Jeon, Byeong-Tak;Jeong, Eun-Ae;Kim, Eun-Jin;Kang, Da-Won;Lee, Jong-Sil;Jeong, Baek-Geun;Kim, Jin-Hyun;Choi, Bong-Hoi;Lee, Jung-Eun;Kim, Jong-Woo;Choi, Jun-Young;Roh, Gu-Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.159-165
    • /
    • 2012
  • Squamous cell carcinoma (SCC) and adenocarcinoma (AC) are the major histological types of non-small cell lung carcinoma (NSCLC). Although both SCCs and ACs have been characterized histologically and clinically, the precise mechanisms underlying their migration and invasion are not yet known. Here, we address the involvement in NSCLC of the p21-associated kinase1 (Pak1)/LIM kinase1 (LIMK1)/cofilin pathway, which recently has been reported to play a critical role in tumor migration and invasion. The Pak1/LIMK1/cofilin pathway was evaluated in tumors from SCC (n=35) and AC (n=35) patients and in SCC- and AC-type cell lines by western blotting, immunohistochemistry, and in vitro migration and invasion assays. The levels of phosphorylated Pak1, LIMK1, and cofilin in lung tumor tissues from SCC patients were increased as compared to normal tissues. In addition, immunohistochemistry showed greater expression of phosphorylated cofilin in SCC tissues. Expression of phosphorylated Pak1 and LIMK1 proteins was also significantly higher in SCC-type cells than in AC-type cells. Moreover, migration and invasion assays revealed that a higher percentage of SCC type cells exhibited migration and invasion compared to AC type cells. Migration was also decreased in LIMK1 knockdown SK-MES-1 cells. These findings suggest that the activation of the Pak1/LIMK1/cofilin pathway could preferentially contribute to greater tumor migration and invasion in SCC, relative to that in AC.

2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells

  • Mustafa, Ebtihal H;Mahmoud, Huda T;Al-Hudhud, Mariam Y;Abdalla, Maher Y;Ahmad, Iman M;Yasin, Salem R;Elkarmi, Ali Z;Tahtamouni, Lubna H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3213-3222
    • /
    • 2015
  • Background: Cancer metastasis depends on cell motility which is driven by cycles of actin polymerization and depolymerization. Reactive oxygen species (ROS) and metabolic oxidative stress have long been associated with cancer. ROS play a vital role in regulating actin dynamics that are sensitive to oxidative modification. The current work aimed at studying the effects of sub-lethal metabolic oxidative stress on actin cytoskeleton, focal adhesion and cell migration. Materials and Methods: T47D human breast cancer cells were treated with 2-deoxy-D-glucose (2DG), L-buthionine sulfoximine (BSO), or doxorubicin (DOX), individually or in combination, and changes in intracellular total glutathione and malondialdehyde (MDA) levels were measured. The expression of three major antioxidant enzymes was studied by immunoblotting, and cells were stained with fluorescent-phalloidin to evaluate changes in F-actin organization. In addition, cell adhesion and degradation ability were measured. Cell migration was studied using wound healing and transwell migration assays. Results: Our results show that treating T47D human breast cancer cells with drug combinations (2DG/BSO, 2DG/DOX, or BSO/DOX) decreased intracellular total glutathione and increased oxidized glutathione, lipid peroxidation, and cytotoxicity. In addition, the drug combinations caused a reduction in cell area and mitotic index, prophase arrest and a decreased ability to form invadopodia. The formation of F-actin aggregates was increased in treated T47D cells. Moreover, combination therapy reduced cell adhesion and the rate of cell migration. Conclusions: Our results suggest that exposure of T47D breast cancer cells to combination therapy reduces cell migration via effects on metabolic oxidative stress.

Berberine suppresses in vitro migration of human aortic smooth muscle cells through the inhibitions of MMP-2/9, u-PA, AP-1, and NF-κB

  • Liu, Su-Jian;Yin, Cai-Xia;Ding, Ming-Chao;Xia, Shao-You;Shen, Qin-Min;Wu, Ji-Dong
    • BMB Reports
    • /
    • 제47권7호
    • /
    • pp.388-392
    • /
    • 2014
  • Berberine, a type of isoquinoline alkaloid isolated from Chinese medicinal herbs, has been reported to have various pharmacological activities. Studies have demonstrated that berberine has beneficial effects on vascular remodeling and alleviates restenosis after vascular injury. However, its mechanism of action on vascular smooth muscle cell migration is not fully understood. We therefore investigated the effect of berberine on human aortic smooth muscle cell (HASMC) migration. Boyden chamber assay was performed to show that berberine inhibited HASMC migration dose-dependently. Real-time PCR and Western blotting analyses showed that levels of matrix metalloproteinase (MMP)-2, MMP-9, and urokinase-type plasminogen activator (u-PA) were reduced by berberine at both the mRNA and protein levels. Western blotting assay further confirmed that activities of c-Fos, c-Jun, and NF-${\kappa}B$ were significantly attenuated. These results suggest that berberine effectively inhibited HASMC migration, possibly by down-regulating MMP-2, MMP-9, and u-PA; and interrupting AP-1 and NF-${\kappa}B$ mediated signaling pathways.

Novel Suppressive Effects of Ketotifen on Migration and Invasion of MDA-MB-231 and HT-1080 Cancer Cells

  • Kim, Hyun Ji;Park, Mi Kyung;Kim, Soo Youl;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.540-546
    • /
    • 2014
  • The high mortality rates associated with cancer reflect the metastatic spread of tumor cells from the site of their origin. Metastasis, in fact, is the cause of 90% of cancer deaths. Therefore, considerable effort is being made to inhibit metastasis. In the present study, we screened ketotifen for anti-migratory and anti-invasive activities against MDA-MB-231 breast cancer and HT-1080 fibrosarcoma cancer cells. Cancer cell migration and invasion were measured using multi-well chambers. Additionally, western blots were used to examine the effects of ketotifen on the expressions of CDC42, Rho, Rac, and matrix metalloproteinase 9 (MMP-9). The results showed that ketotifen dose-dependently suppressed the migration and invasion of MDA-MB-231 and HT-1080 cells. Ketotifen also suppressed the expressions of CDC42, Rac, and Rho, which, significantly, are involved in MDA-MB-231 and HT-1080 cancer cell migration. Moreover, ketotifen suppressed the expression and activity of MMP-9, which is involved in degradation of the extracellular matrix leading to invasion. The overall data suggested that ketotifen suppresses the migration and invasion of MDA-MB-231 and HT-1080 cancer cells via inhibition of CDC42, Rac, Rho, and MMP-9 expression.

혈관내피세포의 성장 및 세포 이동에 영향을 미치는 발효도라지추출물의 효과 (Effect of Fermented Platycodon grandiflorum Extract on Cell Proliferation and Migration in Bovine Aortic Endothelial Cells)

  • 최우성;송지나;박미현;유희종;박헌용
    • 생명과학회지
    • /
    • 제26권1호
    • /
    • pp.59-67
    • /
    • 2016
  • 도라지는 다양한 종류의 triterpenoid계통의 saponin을 함유한 다년생 식물이다. 도라지는 한국에서 오랫동안 식품으로 사용되어 왔으며 그 추출물에 관한 생리활성연구도 많이 보고되었으나, 발효 도라지추출물에 관한 혈관기능 연구는 미미한 실정이다. 본 연구자들은 먼저 도라지 추출물을 발효시킨 후, 발효도라지추출물을 제조하였으며, 제조된 발효도라지추출물이 혈관내피세포에 어떤 효과를 미치는 지 관찰하였다. BAEC에 발효도라지추출물을 농도 별로 처리하였을 때, 고농도(100 μg/ml)에서는 혈관내피세포의 탈착이 일어났으며, 저농도(0.1 μg/ml)에서는 세포탈착은 일어나지 않았으나 세포성장과 세포이동이 촉발됨을 관찰하였다. 고농도에서 일어난 세포탈착은 세포사 즉, 세포사멸, 세포괴사, 오토파지 등과는 관련이 없었다. 또한 고농도의 도라지 추출물은 혈관내피세포에서 유래한 작은 vesicle을 형성하였는데, 이 vesicle은 세포사멸과 관련이 없기 때문에 내피세포에서 유래된 EMP로 추측된다. 흥미롭게도 고농도의 세포탈착 현상은 EMP로 추측되는 vesicle에 의하여 일어난 현상이었다. 저농도의 도라지 추출물이 유발한 세포이동과 세포성장은 혈관내피세포의 중요한 신호전달물질중의 하나인 Akt의 활성화를 통해 일어남을 확인하였다. 결론적으로 도라지 추출물은 혈관내피세포의 성장을 촉진함으로써 혈관의 안정성을 유지하고 세포성장과 이동을 촉발함으로써 상처치유에 효과를 나타낼 수 있음을 본 연구를 통하여 확인하였다.

세포군집의 확장에 관여하는 물리적 힘의 가시화 (Visualization of mechanical stresses in expanding cell cluster)

  • 조영빈;권보미;고웅현;신현정
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.43-48
    • /
    • 2015
  • Collective cell migration is a fundamental phenomenon observed in various biological processes such as development, wound healing, and cancer metastasis. During the collective migration, cells undergo changes in their phenotypes from those of stable to the migratory state via the process called epithelial-mesenchymal transition (EMT). Recent findings in biology and biochemistry have shown that EMT is closely related to the cancer invasion or metastasis, but not much of the correlations in kinematics and physical forces between the neighboring cells are known yet. In this study, we aim to understand the cell migration and stress distribution within the expanding cell cluster. We constructed the in vitro cell cluster on the hydrogel, employed traction force microscopy (TFM) and monolayer stress microscopy (MSM) to visualize the physical forces within the expanding cell monolayer. During the expansion, cells at the cluster edge exhibited enhanced motility and developed focal adhesions that are the essential features of EMT while cells at the core of the cluster maintained the epithelial characteristics. In the aspect of mechanical stress, the cluster edge had the highest traction force of ~90 Pa directed toward the cluster core, which means that cells at the edge actively pull the substrate to make the cluster expansion. The cluster core of the tightly confined cells by neighboring cells had a lower traction force value (~60 Pa) but the highest intercellular normal stress of ~800 Pa because of the accumulation of traction from the edge of the monolayer.

Suppression of Human Fibrosarcoma Cell Metastasis by Phyllanthus emblica Extract in Vitro

  • Yahayo, Waraporn;Supabphol, Athikom;Supabphol, Roongtawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6863-6867
    • /
    • 2013
  • Phyllanthus emblica (PE) is known to exhibit various pharmacological properties. This study aimed to evaluate the antimetastatic potential of a PE aqueous extract. Cytotoxicity to human fibrosarcoma cells, HT1080, was determined by viability assay using the 3-(4,5-dimethylthiazol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent. Cell migration and invasion were investigated using chemotaxis chambers containing membranes precoated with collagen IV and Matrigel, respectively. Cell attachment onto normal surfaces of cell culture plates was tested to determine the cell-adhesion capability. The molecular mechanism of antimetastatic activity was assessed by measuring the gene expression of matrix metalloproteinases, MMP2, and MMP9, using reverse transcription-polymerase chain reaction (RT-PCR) assay. The mRNA levels of both genes were significantly down-regulated after pretreatment with PE extract for 5 days. Our findings show the antimetastatic function of PE extract in reducing cell proliferation, migration, invasion, and adhesion in both dose- and time-dependent manners, especially growth arrest with low $IC_{50}$ value. A decrease in the expression of both MMP2 and MMP9 seems to be the cellular mechanism for antimetastasis in this case. There is a high potential to use PE extracts clinically as an optional adjuvant therapeutic drug for therapeutic intervention strategies in cancer therapy or chemoprevention.

Loss of βPix Causes Defects in Early Embryonic Development, and Cell Spreading and Platelet-Derived Growth Factor-Induced Chemotaxis in Mouse Embryonic Fibroblasts

  • Kang, TaeIn;Lee, Seung Joon;Kwon, Younghee;Park, Dongeun
    • Molecules and Cells
    • /
    • 제42권8호
    • /
    • pp.589-596
    • /
    • 2019
  • ${\beta}Pix$ is a guanine nucleotide exchange factor for the Rho family small GTPases, Rac1 and Cdc42. It is known to regulate focal adhesion dynamics and cell migration. However, the in vivo role of ${\beta}Pix$ is currently not well understood. Here, we report the production and characterization of ${\beta}Pix$-KO mice. Loss of ${\beta}Pix$ results in embryonic lethality accompanied by abnormal developmental features, such as incomplete neural tube closure, impaired axial rotation, and failure of allantois-chorion fusion. We also generated ${\beta}Pix$-KO mouse embryonic fibroblasts (MEFs) to examine ${\beta}Pix$ function in mouse fibroblasts. ${\beta}Pix$-KO MEFs exhibit decreased Rac1 activity, and defects in cell spreading and platelet-derived growth factor (PDGF)-induced ruffle formation and chemotaxis. The average size of focal adhesions is increased in ${\beta}Pix$-KO MEFs. Interestingly, ${\beta}Pix$-KO MEFs showed increased motility in random migration and rapid wound healing with elevated levels of MLC2 phosphorylation. Taken together, our data demonstrate that ${\beta}Pix$ plays essential roles in early embryonic development, cell spreading, and cell migration in fibroblasts.

Inhibition of the Interleukin-11-STAT3 Axis Attenuates Hypoxia-Induced Migration and Invasion in MDA-MB-231 Breast Cancer Cells

  • Lim, Ji-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.391-396
    • /
    • 2014
  • Although interleukin-11 (IL-11) has been reported to be elevated in hypoxic tumors and has been associated with a poor prognosis in various cancers, little is known about its precise role in promoting metastasis in hypoxic tumors. In the present study, the molecular mechanism underlying the effects of IL-11 on MDA-MB-231 breast cancer cells migration and invasion in relation to metastasis under hypoxic conditions has been defined. Inhibition of IL-11 expression or function using small interfering RNA (siRNA) or a neutralizing antibody attenuated hypoxic MDA-MB-231 breast cancer cell migration and invasion through down-regulation of matrix metalloproteinases (MMPs) and activation of epithelial-to-mesenchymal transition (EMT) related gene expression. In addition, hypoxia-induced IL-11 increased STAT3 phosphorylation and STAT3 knockdown suppressed hypoxic MDA-MB-231 breast cancer cell invasion due to reduced MMP levels and reprogrammed EMT-related gene expression. These results suggest that one of the hypoxic metastasis pathways and the regulation of this pathway could be a potential target for novel cancer therapeutics.

Inhibitory effects of Saiko-Ka-Ryukotsu-Borei-To on the migration and proliferation of vascular smooth muscle cell

  • Chung, Hwa-Jin;Ikuro Maruyama;Tadato Tani;Lee, Sang-Kook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.100-100
    • /
    • 2003
  • We have reported that oral administration of Saiko-Ka-Ryukotsu-Borei-To (SRB), a traditional Chinese formulation, inhibited the intimal thickening in carotid artery after balloon injury in cholesterol-fed rats. To elucidate its mechanism, the effects of SRB on migration and proliferation of vascular smooth muscle cell (VSMC) were examined in vivo and in vitro. We have reported that oral administration of Saiko-ka-Ryukotsu-Borei-To (SRB), a traditional Chinese formulation, inhibited the intimal thickening in carotid artery after balloon injury in cholesterol-fed rats. To elucidate its mechanism, the effects of SRB on migration and proliferation of vascular smooth muscle cell (VSMC) were examined in vivo and in vitro.

  • PDF