• Title/Summary/Keyword: cell microstructure

Search Result 339, Processing Time 0.027 seconds

Thermal Process Optimization of Pb-free Ag-paste and Evaluation of Electrical Properties in Mono-Si Solar Cell (단결정 Si 태양전지 적용을 위해 제조된 무연 은 페이스트의 열 공정 최적화 및 전기적 특성 평가)

  • Jeong, Ji-Hyun;Kim, Sung-Jin;Son, Chang-Rok;Ur, Soon-Chul;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.844-849
    • /
    • 2011
  • Two kind of Ag-pastes were prepared for integrating the bulk Si solar cell. One is the Ag-paste with Pb-based glass frit and the other is that with Bi-based glass frit. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 2 wt% additives. After fabricating the Ag-pastes, they was coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. The solar cell efficiency was 17.6% in the case of the Pb-based Ag-paste. However that was 16.2% in the solar cell integrated with the Bi-based Ag-paste. The lower performance in Bi-based Ag-paste was caused by the higher series resistance and the lower shunt resistance in comparison with the Pb-based Ag-paste.

Determination of the linear elastic stiffness and hygroexpansion of softwood by a multilayered unit cell using poromechanics

  • Gloimuller, Stefan;de Borst, Karin;Bader, Thomas K.;Eberhardsteiner, Josef
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.229-265
    • /
    • 2012
  • Hygroexpansion of wood is a known and undesired characteristic in civil engineering. When wood is exposed to changing environmental humidity, it adsorbs or desorbs moisture and warps. The resulting distortions or - at restrained conditions - cracks are a major concern in timber engineering. We herein present a multiscale model for prediction of the macroscopic hygroexpansion behavior of individual pieces of softwood from their microstructure, demonstrated for spruce. By applying poromicromechanics, we establish a link between the swelling pressure, driving the hygroexpansion of wood at the nanoscale, and the resulting macroscopic dimensional changes. The model comprises six homogenization steps, which are performed by means of continuum micromechanics, the unit cell method and laminate theory, all formulated in a poromechanical framework. Model predictions for elastic properties of wood as functions of the moisture content closely approach corresponding experimental data. As for the hygroexpansion behavior, the swelling pressure has to be back-calculated from macroscopic hygroexpansion data. The good reproduction of the anisotropy of wood hygroexpansion, based on only a single scalar calibration parameter, underlines the suitability of the model. The multiscale model constitutes a valuable tool for studying the effect of microstructural features on the macroscopic behavior and for assessing the hygroexpansion behavior at smaller length scales, which are inaccessible to experiments. The model predictions deliver input parameters for the analysis of timber at the structural scale, therewith enabling to optimize the use of timber and to prevent moisture-induced damage or failure.

Microstructure and Tensile Deformation Behavior of Ni-Cr-Al Powder Porous Block Material (블록형 Ni-Cr-Al 분말 다공성 소재의 미세조직 및 인장 변형 거동)

  • Kim, Chul-O;Bae, Jung-Suk;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.93-99
    • /
    • 2015
  • This study investigated the microstructure and tensile properties of a recently made block-type Ni-Cr-Al powder porous material. The block-type powder porous material was made by stacking multiple layers of powder porous thin plates with post-processing such as additional compression and sintering. This study used block-type powder porous materials with two different cell sizes: one with an average cell size of $1,200{\mu}m$ (1200 foam) and the other with an average cell size of $3,000{\mu}m$ (3000 foam). The ${\gamma}$-Ni and ${\gamma}^{\prime}-Ni_3Al$ were identified as the main phases of both materials. However, in the case of the 1,200 foam, a ${\beta}$-NiAl phase was additionally observed. The relative density of each block-type powder porous material, with 1200 foam and 3000 foam, was measured to be 5.78% and 2.93%, respectively. Tensile tests were conducted with strain rates of $10^{-2}{\sim}10^{-4}sec^{-1}$. The test result showed that the tensile strength of the 1,200 foam was 6.0~7.1 MPa, and that of 3,000 foam was 3.0~3.3 MPa. The elongation of the 3,000 foam was higher (~9%) than that (~2%) of the 1,200 foam. This study also discussed the deformation behavior of block-type powder porous material through observations of the fracture surface, with the results above.

Microporous Polystyrene Membranes Produced via Thermally Induced Phase Separation (열적으로 유도된 상 분리에 의해 제조된 폴리스티렌 미세 다공성 막)

  • Song, Seung-Won;Torkelson, John M.
    • Membrane Journal
    • /
    • v.5 no.3
    • /
    • pp.119-128
    • /
    • 1995
  • The effects of coarsening on microstructure formation in polystyrene-cyclohexane solutions and membranes made from them were studied by scanning electron miccoscopy(SEM). Thermal analysis of the polymer solutions was carried out with a differential scanning calorimeter and the binodal curve was determined from the onset temperature of the heat of demixing peak. Using thermally induced phase separation(TIPS) and a freeze drying technique, it was demonstrated that polymer membrane microstructure can be changed significantly by controlling coarsening time and quench route. For systems undergoing phase separation by spinodal decomposition, resulting in a well interconnecmd, microporous structure with nearly uniform pore sizes, it was found that extending the phase separation time prior m freezing and solvent removal can result in a significant increase in pore or cell size which is highly dependent on both quench depth and coarsening time. Also this study has revealed the important role of polymer concentration in dictating the material continuity of the membranes.

  • PDF

Porosity Control of the Sealing Glass for Joining Alumina Components in a NaS Battery Cell Packaging (NaS 배터리 셀 패키지의 알루미나 컴포넌트 접합용 Sealing Glass의 기공율 제어)

  • Kim, Chi Heon;Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.57-61
    • /
    • 2016
  • Thick film sealing glass paste is required for cell packaging of NaS based battery for energy storage system, to join the beta-alumina electrolyte tube and the alpha-alumina battery cell cap components. This paper presents the effect of the particle sizes of seal glass powder and the sealing temperatures on the microstructure of the glass sealants was investigated. It was found that the larger in the particle size of seal glass powder, the smaller the pore volume and the number of pores in a unit area. Also, the number of pores decreased with increasing the sealing temperatures while the pore size was increased. This result enables the control of porosity, pore distribution and number of pores in a microstructure of glass sealing component by proper selection of glass powders particle size and sealing temperature.

Microscopic Study on the Laser Surface-Melted Alloy 600

  • Lim, Yun-Soo;Cho, Hai-Dong;Kuk, Il-Hiun;Kim, Joung-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.347-352
    • /
    • 1996
  • Studies on tile microstructural and compositional changes in sensitized Ni base Alloy 600 by laser surface melting have been carried out using TEM equipped with EDXA. The microstructure of the laser melted zone was mainly consisted of fine cells, and along the cell and grain boundaries, Cr enrichment due to its segregation was observed. Cr carbides having formed along the grain bundaries during the sensitization treatment have been completely dissloved. The cell walls were decorated with dislocations and the very tiny precipitates, found to be Ti(CN) type, were distributed randomly along the cell walls with tangled dislocations around them.

  • PDF

Fabrication of a Dual-Gap Substrate Using the Replica-molding Technique for Transflective Liquid Crystal Displays

  • Kim, Yeun-Tae;Hong, Jong-Ho;Cho, Seong-Min;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.68-71
    • /
    • 2009
  • A replica-molding method of fabricating a dual-gap substrate for transflective liquid crystal (LC) displays is demonstrated. The dual-gap substrate provides homeotropic alignment for the LC molecules without any surface treatment and embedded bilevel microstructure on one of the two surfaces to maintain different cell gaps between the transmissive and reflective subpixels. The proposed transflective LC cell shows no electro-optic disparity between two subpixels and reduces the panel thickness and weight by 30% compared to the conventional transflective LC cell, which has two glass substrates.

Macro-and Microstructure of Chinese Cabbage Leaves and Their Texture Measurements (김치제조용 배추의 구조와 조직감 측정에 관한 연구)

  • Lee, Cherl-Ho;Hwang, In-Ju;Kim, Jeong-Kyo
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.742-748
    • /
    • 1988
  • The macro-and microstructure of Chinese cabbage used for Korean Kimchi preparation were examined and the texture characteristics of raw cabbage leaf and salted or blanched leaves were evaluated by cutting test. The length and thickness of leaf stalk increased with the order of pyllotaxis, but the thinning effect of outermost leaves was observed. The microstructure of cut-profile of stalk showed densely compacted vascular systems aligned in the center of stalk and the outer space was filled with large parenchima cells. Due to this structure, characteristic cutting curves were obtained by cutting test, composing three peaks of cutting for inner surface skin, center vascular system and outer surface skin. Salting and blanching increased the cutting force mainly due to the increase of Gutted cell wall number caused by the structure collapse.

  • PDF

Characteristics of LSC coated Metallic Interconnect for Solid Oxide Fuel Cell (LSC가 코팅된 고체산화물 연료전지용 금속연결재의 특성 연구)

  • Pyo, Seong-Soo;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • This study reports the high-temperature oxidation kinetics, ASR(area specific resistance), and interfacial microstructure of metallic interconnects coated with conductive oxides in oxidation atmosphere at $800^{\circ}C$, The conductive material LSC($La_{0.8}Sr_{0.2}CoO_3$, prepared by Solid State Reaction) was coated on the Crofer22APU. The contact behavior of coating layer/metal substrate was increased by sandblast. The electrical conductivity of the LSC coated Crpfer22APU was measured by a DC two probe four wire method for 4000hr, in air at $800^{\circ}C$. Microstructure and composition of the coated layer interface were investigated by SEM/EDS. These results show that a coated LSC layer prevents the formation and growth of oxide scale such as $Cr_2O_3$ and enhances the long-term stability and electrical performance of metallic interconnects for SOFCs.

Fabrication Characteristics and Performance Evaluation of a Large Unit Cell for Solid Oxide Fuel Cell (고체산화물연료전지용 대면적 단위전지 제조특성 및 성능평가)

  • Shin, Y.C.;Kim, Y.M.;Oh, I.H.;Kim, H.S.;Lee, M.S.;Hyun, S.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.13-16
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) is an electrochemical energy conversion system with high efficiency and low-emission of pollution. In order to reduce the operating temperature of SOFC system under $800^{\circ}C$, the thickness reduction of YSZ electrolyte to be as thin as possible, e.g., less than 10 ${\mu}m$ are considered with the microstructure control and optimum design of unit cell. Methods for reducing the thickness of YSZ electrolyte have been investigated in coin cell. Moreover, a large unit cell($8cm{\times}8cm$) for SOFC was fabricated using an anode-supported electrolyte assembly with a thinner electrolyte layer, which was prepared by a tape casting method with a co-sintering technique. we studied the design factors such as active layer, electrolyte thickness, cathode composition, etc,. by the coin type of unit cell ahead of the fabrication process of a large unit cell and also reviewed about the evaluation technique of a large size unit cell such as interconnect design, sealing materials and current collector and so forth. Electrochemical evaluations of the unit cells, including measurements such as power density and impedance, were performed and analyzed. Maximum power density and polarization impedance of coin cell were 0.34W/$cm^2$ and $0.45{\Omega}cm^2$ at $800^{\circ}C$, respectively. However, Maxium power density of a large unit cell($5cm{\times}5cm$) decreased to 0.21W/$cm^2$ at $800^{\circ}C$ due to the increase of ohmic resistance. However, It was found that the potential value of a large unit cell loaded by 0.22A/$cm^2$ showed 0.76V at 100hrs without the degradation of unit cell.

  • PDF