DOI QR코드

DOI QR Code

Microstructure and Tensile Deformation Behavior of Ni-Cr-Al Powder Porous Block Material

블록형 Ni-Cr-Al 분말 다공성 소재의 미세조직 및 인장 변형 거동

  • Kim, Chul-O (School of Advanced Materials Engineering, Andong National University) ;
  • Bae, Jung-Suk (Alantum corp.) ;
  • Lee, Kee-Ahn (School of Advanced Materials Engineering, Andong National University)
  • Received : 2015.04.13
  • Accepted : 2015.04.21
  • Published : 2015.04.28

Abstract

This study investigated the microstructure and tensile properties of a recently made block-type Ni-Cr-Al powder porous material. The block-type powder porous material was made by stacking multiple layers of powder porous thin plates with post-processing such as additional compression and sintering. This study used block-type powder porous materials with two different cell sizes: one with an average cell size of $1,200{\mu}m$ (1200 foam) and the other with an average cell size of $3,000{\mu}m$ (3000 foam). The ${\gamma}$-Ni and ${\gamma}^{\prime}-Ni_3Al$ were identified as the main phases of both materials. However, in the case of the 1,200 foam, a ${\beta}$-NiAl phase was additionally observed. The relative density of each block-type powder porous material, with 1200 foam and 3000 foam, was measured to be 5.78% and 2.93%, respectively. Tensile tests were conducted with strain rates of $10^{-2}{\sim}10^{-4}sec^{-1}$. The test result showed that the tensile strength of the 1,200 foam was 6.0~7.1 MPa, and that of 3,000 foam was 3.0~3.3 MPa. The elongation of the 3,000 foam was higher (~9%) than that (~2%) of the 1,200 foam. This study also discussed the deformation behavior of block-type powder porous material through observations of the fracture surface, with the results above.

Keywords

References

  1. L. J. Gibson and M. F. Ashby: Cellular solids, Structure and Properties, Cambridge University Press, U.K (1997) 532.
  2. T. J. Lu, H. A. Stone and M. F. Ashby: Acta Mater., 46 (1998) 3619. https://doi.org/10.1016/S1359-6454(98)00031-7
  3. C. Y. Zhao: Int. J. Heat Mass Transfer., 55, (2012) 3618. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.017
  4. T. J. Lu: Int. J. Heat Mass Transfer., 42 (1998) 2031.
  5. H. Nakajima: Progress in Mater. Science, 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  6. W. Azzi, W. L. Roberts and A. Rabiei: Materials and Design, 28 (2007) 569. https://doi.org/10.1016/j.matdes.2005.08.002
  7. J. Choi and K. H. Kim: J. Korean Powder Metall. Inst., 17 (2010) 489. (Korean) https://doi.org/10.4150/KPMI.2010.17.6.489
  8. M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson and H. N. G. Wadley: Metal Foams: A design Guide, Oxford Press, U.K. (2000) 263.
  9. M. F. Ashby and N. A. Fleck: Cellular metals and metal foaming technology, J. Banhart (Ed.), MIT Press, Germany (2001) 519.
  10. J. G. Smeggil, A. W. Funkenbusch and N. S. Bornstein: Metall. Trans., 17A (1986) 923.
  11. R. A. Steven and P. E. J. Flewitt: Mater. Sci. Eng., 37 (1979) 237. https://doi.org/10.1016/0025-5416(79)90157-5
  12. G. H. Gessinger: Powder metallurgy of superalloys, Butterworth & Co., London, U.K. (1984).
  13. E. Koza, M. Leonowicz, S. Wojciechowski and F. Simancik: Mater. Lett., 58 (2004) 132. https://doi.org/10.1016/S0167-577X(03)00430-0
  14. E. Saenz, A. villate, I. Garuz, A.M. Irisarri, G. Rausch and M. Weber: Bol. Soc. Esp. Ceram. Vidrio., 39 (2000) 506. https://doi.org/10.3989/cyv.2000.v39.i4.810
  15. J. Bin, W. Zejun and Z. Naiqin: Scr. Mater., 56 (2007) 169. https://doi.org/10.1016/j.scriptamat.2006.08.070
  16. M. Hakamada, T. Nomura, Y. Yamada, Y. Chino, H. Hoso Kawa, T, Nakajima, Y. Chen, H. Kusuda and M. Mabuchi: J. Mater. Res., 20 (2005) 3387.
  17. T. G. Nieh, K. Higashi and J. Wadsworth: Mater. Sci. Eng. A., 283 (2000) 105. https://doi.org/10.1016/S0921-5093(00)00623-7
  18. J. Zhou, Z. Gao, A. M. Cuitino and W. O. Soboyejo: Mater. Sci. Eng. A., 386 (2004) 118. https://doi.org/10.1016/S0921-5093(04)00933-5
  19. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi and K. Higashi: Mater. Sci. Eng. A., 280 (2000) 225. https://doi.org/10.1016/S0921-5093(99)00671-1
  20. D. T. Queheillalt, Y. Katsumura and H. N. G. Wadley: Scr. Mater., 50 (2004) 313. https://doi.org/10.1016/j.scriptamat.2003.10.016
  21. X. badiche, S. Forest, T. Guibert, Y. Bienvenu, J.-D. bartout, P. Ienny, M. Croset and H. Bernet: Mater. Sci. Eng. A., 289 (2000) 276. https://doi.org/10.1016/S0921-5093(00)00898-4
  22. S. H. Choi, S. Y. Kim, J. Y. Yun, Y. M. Kong, B. K. Kim and K. A. Lee: Met. Mater. Int., 17 (2011) 301. https://doi.org/10.1007/s12540-011-0418-3
  23. S. H. Lim, J. S. Oh, Y. M. Kong, B. K. Kim, M. H. Park and K. A. Lee: Korean J. Met. Mater., 51 (2013) 743. (Korean) https://doi.org/10.3365/KJMM.2013.51.10.743
  24. J. S. Oh, M. C. Shim, M. H. Park and K. A. Lee: Met. Mater. Int., 20 (2014) 931.
  25. K. S. Kim, J. Y. Yun, B.G. Choi and K. A. Lee: Met. Mater. Int., 20 (2014) 507. https://doi.org/10.1007/s12540-014-3015-4
  26. K.C. Russell and J.W. Edington: J. Met. Sci., 6 (1972) 20. https://doi.org/10.1179/030634572790445821