• Title/Summary/Keyword: cell microstructure

Search Result 336, Processing Time 0.027 seconds

Microstuctures and Themal Stability of Rapidly Solidified Al-Fe-V-Si-(Mn) Alloys (급랭응고한 Al-Fe-V-Si계 합금의 미세조직과 열안정성에 관한 연구)

  • Kim, Seon-Hwa;Park, Won-Wook
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.57-66
    • /
    • 1991
  • The main purpose of this paper was to investigate the change of rapidly solidified microstructures and dispersoid behavior according to heat-treatment in the Al-Fe-V-Si-(Mn) alloys. It was found that (111) preferred orientation identified by X-ray diffraction and fine subgrain/large grain were observed in the rapidly solidified Al-Fe-V-Si-(Mn) alloys. Cell boundary of the zone A was composed of the microcrystalline, whereas that of the zone B was amorphous. Decomposition of the Al-Fe-V-Si-(Mn) alloys occurred at about $300^{\circ}C$. These alloys exhibited excellent thermal stability at the elevated temperature. Microstructure of the zone B was more stable than that of the zone A. The spherical dispersoid and 5-fold symmetry phase was also more thermally stable than the amorphous structure of cell boundary.

  • PDF

Properties of CdS Thin Films Prepared by Chemical Bath Deposition as a Function of Thiourea/CdAc2 Ratio in Solution (CBD법으로 제작된 CdS 박막의 thiourea/CdAc2 농도비에 따른 특성)

  • Song, Woo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • In this paper CdS thin films, which were widely used window layer of the CdS/CdTe and the CdS/$CuInSe_2$ heterojunction solar cell, were grown by chemical bath deposition, which is a very attractive method for low-cost and large-area solar cells, and the structural, optical and electrical properties of the films was studied. As the thiourea/$CdAc_2$ mole ratio was increased, the deposition rate of CdS films prepared by CBD was increased due to increasing reaction velocity in solution and the optical bandgap was increased at higher thiourea/$CdAc_2$ mole ratio due to larger grain size and continuous microstructure. The minimum resistivity of the films was at thiourea/$CdAc_2$ mole ratio of 3.

Effects of Ru Co-Sputtering on the Properties of Porous Ni Thin Films

  • Kim, Woo-Sik;Choi, Sun-Hee;Lee, Hae-Weon;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.746-750
    • /
    • 2006
  • NiO films and Ru co-sputtered NiO films were deposited by reactive magnetron sputtering for micro-solid oxide fuel cell anode applications. The deposited films were reduced to form porous films. The reduction kinetics of the Ru doped NiO film was more sluggish than that of the NiO film, and the resulting microstructure of the former exhibited finer pore networks. The possibility of using the films for the anodes of single chamber micro-SOFCs was investigated using an air/fuel mixed environment. It was found that the abrupt increase in the resistance is suppressed in the Ru co-sputtered film, as compared to undoped film.

Eutectic structure evolution of Al2O3-ZrO2-Y2O3 system for apotential hybrid solar cell application

  • Han, Young-Hwan;Yun, Jon-Do;Harada, Yohei;Jeong, Young-Keun;Makino, Taro;Kim, Kwang-Ho;Kwon, Se-Hun;Kim, Young-Moon;Kakegawa, Kazuyuki
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.11.1-11.1
    • /
    • 2009
  • Ternary Al2O3.ZrO2.Y2O3 samples with a eutecticcomposition were prepared by slow cooling. The microstructural evolution wasobserved with X-ray diffraction (XRD), scanning electron microscopy (SEM). TheSEM observation of the ternary samples agreed with the XRD with a completion ofcrystallisation by slow cooling. The target materials commonly have 'cantaloupe skin' microstructures as shown inthe previous studies by Han et al. The nanocomposite may have experienceddifferent cooling rates with two different microstructures, near the surfacehaving experienced optimal conditions for the eutectic reaction during theircooling and thus formed the eutectic microstructure, near the centre havingexperienced a slower cooling rate. The crystallised eutectic ternary Al2O3.ZrO2.Y2O3 system had three different phaseswith a 3Y2O3. 5Al2O3 (yttrium.aluminiumgarnet phase), an alumina phase formed by the eutectic reaction, and a solidsolution of ZrO2 and Y2O3.

  • PDF

Properties of Dye Sensitized Solar Cells with Porous TiO2 Layers Using Polymethyl-Methacrylate Nano Beads

  • Choi, Minkyoung;Noh, Yunyoung;Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.194-199
    • /
    • 2016
  • We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the $TiO_2$ layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with $0.45cm^2$ active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the $TiO_2$ layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the $TiO_2$ layer was determined to be an effective method for improving the ECE of a DSSC.

Changes of Texture, Soluble Solids and Protein during Cooking of Soybeans (콩의 조리과정 중 텍스쳐, 고형물 및 단백질의 변화)

  • Kim, Young-Ok;Jung, Hae-Ok;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.192-198
    • /
    • 1990
  • Texture, losses of total solids and proteins o) soybeans were studied during cooking at $100-135^{\circ}C$. The textural changes were measured using the puncture probe with an Instron Universal Testing Machine, and changes in microstructure of beans were observed with scanning electron microscopy during the cooking. The major effect observed was a breakdown of the cell walls and appearance of the protein bodies with soaking process. As the cooking time at $100^{\circ}C$ is longer, the separation of cells and changes in cell shape could be seen in the sample. The greater amounts of soluble solids were leached out with longer coo king time from the beans.

  • PDF

Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results

  • Cengiz, Ibrahim Fatih;Oliveira, Joaquim Miguel;Reis, Rui L.
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.279-289
    • /
    • 2018
  • Background: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. Main body: This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. Conclusion: Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.

Microstructure, Hardness, and Fracture Toughness of Surface Composites Fabricated by High-Energy Electron-Beam Irradiation of Fe-Based Metamorphic Alloy Powders and VC Powders (철계 반비정질 합금 분말과 VC 분말을 고에너지 전자빔으로 투사하여 제조된 표면복합재료의 미세조직, 경도, 파괴인성)

  • Nam, Duk-Hyun;Do, Junghyun;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.634-645
    • /
    • 2008
  • In this study, surface composites were fabricated with Fe-based amorphous alloy powders and VC powders by high-energy electron beam irradiation, and the correlation of their microstructure with hardness and fracture toughness was investigated. Mixture of Fe-based metamorphic powders and VC powders were deposited on a plain carbon steel substrate, and then electron beam was irradiated on these powders without flux to fabricate surface composites. The composite layers of 1.3~1.8 mm in thickness were homogeneously formed without defects and contained a large amount (up to 47 vol.%) of hard $Cr_2B$ and $V_8C_7$ crystalline particles precipitated in the solidification cell region and austenite matrix, respectively. The hardness of the surface composites was directly influenced by hard $Cr_2B$ and $V_8C_7$ particles, and thus was about 2 to 4 times greater than that of the steel substrate. Observation of the microfracture process and measurement of fracture toughness of the surface composites indicated that the fracture toughness increased with increasing additional volume fraction of $V_8C_7$ particles because $V_8C_7$ particles effectively played a role in blocking the crack propagation along the solidification cell region heavily populated with $Cr_2B$ particles. Particularly in the surface composite fabricated with Fe-based metamorphic powders and 30 % of VC powders, the hardness and fracture toughness were twice higher than those of the surface composite fabricated without mixing of VC powders.

Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells (고체산화물 연료전지 연료극 및 전해질 미세구조 최적화)

  • Noh, Jong Hyeok;Myung, Jae-ha
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.525-530
    • /
    • 2019
  • The performance and stability of solid oxide fuel cells (SOFCs) depend on the microstructure of the electrode and electrolyte. In anode, porosity and pore distribution affect the active site and fuel gas transfer. In an electrolyte, density and thickness determine the ohmic resistance. To optimizing these conditions, using costly method cannot be a suitable research plan for aiming at commercialization. To solve these drawbacks, we made high performance unit cells with low cost and highly efficient ceramic processes. We selected the NiO-YSZ cermet that is a commercial anode material and used facile methods like die pressing and dip coating process. The porosity of anode was controlled by the amount of carbon black (CB) pore former from 10 wt% to 20 wt% and final sintering temperature from $1350^{\circ}C$ to $1450^{\circ}C$. To achieve a dense thin film electrolyte, the thickness and microstructure of electrolyte were controlled by changing the YSZ loading (vol%) of the slurry from 1 vol% to 5 vol. From results, we achieved the 40% porosity that is well known as an optimum value in Ni-YSZ anode, by adding 15wt% of CB and sintering at $1350^{\circ}C$. YSZ electrolyte thickness was controllable from $2{\mu}m$ to $28{\mu}m$ and dense microstructure is formed at 3vol% of YSZ loading via dip coating process. Finally, a unit cell composed of Ni-YSZ anode with 40% porosity, YSZ electrolyte with a $22{\mu}m$ thickness and LSM-YSZ cathode had a maximum power density of $1.426Wcm^{-2}$ at $800^{\circ}C$.

Multi-layered Coating Deposited on PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 다층 코팅의 증착)

  • Yun, Young-Hoon;Chung, Hoon-Taek;Cha, In-Su;Choi, Jeong-Sik;Kim, Dong-Mook;Jung, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.472-476
    • /
    • 2008
  • The surface region of commercial stainless steel 304 and 316 plates has been modified through deposition of the multi-layered coatings composed of titanium film ($0.1{\mu}m$) and gold film ($1-2{\mu}m$) by an electron beam evaporation method. XRD patterns of the stainless steel plates deposited with conductive metal films showed the peaks of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The stainless steel plates modified with $0.1{\mu}m$ titanium film and $1{\mu}m$ gold film showed microstructure of grains of under 100 nm diameter. The external surface of the stainless steel plates deposited with $0.1{\mu}m$ titanium film and $2{\mu}m$ gold film represented somewhat grain growth of Au grains in FE-SEM image. The electrical resistance and water contact angle of the stainless steel bipolar plates modified with multi-layered coatings were examined with the thickness of the gold film.