• Title/Summary/Keyword: cell injury

Search Result 1,163, Processing Time 0.034 seconds

Alpha-lipoic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced cell injury by inhibiting autophagy and apoptosis

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Lim, HyangI;Park, Jong-Hyun;Yang, Kwang Yeol;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Chun, Hong Sung;Lee, Dong-Seol;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • Alpha-lipoic acid (ALA) is a naturally occurring antioxidant and has been previously used to treat diabetes and cardiovascular disease. However, the autophagy effects of ALA against oxidative stress-induced dopaminergic neuronal cell injury remain unclear. The aim of this study was to investigate the role of ALA in autophagy and apoptosis against oxidative stress in the SH-SY5Y human dopaminergic neuronal cell line. We examined SH-SY5Y phenotypes using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (cell viability/proliferation), 4′,6-diamidino-2-phenylindole dihydrochloride nuclear staining, Live/Dead cell assay, cellular reactive oxygen species (ROS) assay, immunoblotting, and immunocytochemistry. Our data showed ALA attenuated hydrogen peroxide (H2O2)-induced ROS generation and cell death. ALA effectively suppressed Bax up-regulation and Bcl-2 and Bcl-xL down-regulation. Furthermore, ALA increased the expression of the antioxidant enzyme, heme oxygenase-1. Moreover, the expression of Beclin-1 and LC-3 autophagy biomarkers was decreased by ALA in our cell model. Combined, these data suggest ALA protects human dopaminergic neuronal cells against H2O2-induced cell injury by inhibiting autophagy and apoptosis.

Protective Effects of Seonpyejeongcheon-tang on Elastase-Induced Lung Injury in Mice (Elastase 매개성 폐조직 손상에 대한 선폐정천탕(宣肺定喘湯)의 보호효과)

  • Yoon, Jong-Man;Park, Yang-Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.84-101
    • /
    • 2010
  • Objectives : This study aimed to evaluate the protective effects of Seonpyejeongcheon-tang (SJT) on elastase-induced lung injury. Materials and Methods : The extract of SJT was treated to A549 cells and an elastase-induced lung injury mouse model. Then, various parameters such as cell-based cytoprotective activity and histopathological findings were analyzed. Results : SJT showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B 1, Cdk1, and Erk1/2, and gene expression of TNF-$\alpha$ and IL-$1{\beta}$ in A549 cells. SJT treatment also revealed a protective effect on elastase-induced lung injury in mouse model. This effect was evidenced via histopathological findings, including immunofluoresence stains against elastin, collagen, and caspase 3, and protein levels of cyclin B1, Cdc2, and Erk1/2 in lung tissue. Conclusion : These data suggest that SJT has pharmaceutical properties on lung injury. This study thus provides scientific evidence for the efficacy of SJT for clinical application to patients with chronic obstructive pulmonary disease.

Protective Effects of Mundongcheongpye-eum on Lung Injury Induced by Elastase

  • Nam, Tae-Heung;Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.1042-1052
    • /
    • 2010
  • This study aimed to evaluate the protective effects of Mundongcheongpye-eum (MCE) on elastase-induced lung injury. The extract of MCE was treated to A549 cells and elastase-induced lung injury mice model. Then, various parameters such as cell-based cyto-protective activity and histopathological finding were analyzed. MCE showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B1, Cdc2, and Erk1/2, and gene expression of TNF-${\alpha}$ and IL-$1{\beta}$ in A549 cells. MCE treatment also revealed the protective effect on elastase-induced lung injury in mice model. This effect was evidenced via histopathological finding including immunofluence stains against elastin, collagen, caspase 3, and protein level of cyclin B1, Cdc2, and Erk1/2 in lung tissue. These data suggest that MCE has a pharmaceutical properties on lung injury. This study would provide an scientific evidence for the efficacy of MCE for clinical application to patients with chronic obstructive pulmonary disease.

Regulatory Effects of Samul-tang on Axonal Recovery after Spinal Cord Injury in Rats

  • Lee, Ki-Tae;Kim, Yoon-Sik;Ryu, Ho-Ryong;Jo, Hyun-Kyeng;An, Jung-Jo;Namgung, Uk;Seol, In-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1303-1310
    • /
    • 2006
  • In oriental medicine, Samul-tang (SMT) has been used for the treatment of cardiovascular diseases and neuronal disorders. Here, possible effects of SMT on axonal regeneration after the spinal cord injury were examined. SMT treatment induced increases in regeneration-related proteins GAP-43, cell division cycle 2 (Cdc2) and phospho-Erk1/2 in the peripheral sciatic nerves after crush injury. Increased levels of Cdc2 and phospho-Erk1/2 were observe mostly in the gray matter area and some in the dorsomedial white matter. These increases correlated with increased cell numbers in affected areas. Moreover, axons of corticospinal tract (CST) showed increased sprouting in the injured spinal cord when administrated with SMT compared with saline-treated control. Thus, the present data indicate that SMT may be useful for identifying active components and for therapeutic application toward the treatment of spinal cord disorders after injury.

Photodynamically induced endothelial cell injury and neutrophil-like HL-60 adhesion

  • Takahashi, Miho;Nagao, Tomokazu;Matsuzaki, Kazuki;Nishimura, Toshihiko;Minamitani, Haruyuki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.518-520
    • /
    • 2002
  • Photodynamic therapy (PDT) is a treatment modality based on photochemical reaction and the resultant cytotoxic reactive oxygen species. The platelet thrombus formation leading to stasis observed in vivo during PDT is called vascular shut down (VSD) effect. To investigate the mechanism of the VSD effect, we observed Human Umblical Vein Endothelial Cell (HUVEC) injury induced by photochemical reaction. We observed cell retraction and blebbing after PDT. It seems that the injury was not fetal and only morphological change. Then, the cytoplasm was stained by Calcein-AM and subendothelial area was evaluated from fluorescence microscopy. The rate of subendothelial area after PDT increased significantly. Second, we investigated interaction between neutrophils and HUVEC. Human promyelocytic leukemia cells (HL-60) were differentiated into neutrophil by incubation with all-trans retinoic acid. Calcein-AM labeled neutrophil adhesion to HUVEC was evaluated from fluorescence microscopy. PDT-induced neutrophil adhesion to HUVEC depended more on the exposure of subendothlial area than on neutrophil activation. This result suggests that there is a certain interaction between neutrophil and HUVEC during PDT.

  • PDF

Water Extract of Samultang Reduces Apoptotic Cell Death by $H_2O_2$-Induced Oxidative Injury in SK-N-MC Cells

  • Lee, Gyoung-Wan;Kim, Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.139-145
    • /
    • 2009
  • The purpose of this study was to evaluate the effects of the water extract of Samultang (SMT), a Chinese herb, on apoptotic cell death by $H_2O_2$-induced oxidative stress in SK-N-M C cells. A nuclear fragmentation was observed via fluorescence imaging 12 h after exposure to 30 ${\mu}M$ $H_2O_2$ and DNA laddering was detected via agarose electrophoresis gel. In addition, increases in sub-G1 phase and cleavage of the PARP protein were observed. However, treatment with SMT for 2 h prior to $H_2O_2$ exposure significantly reduced apoptotic cell death induced by incubation with 30 ${\mu}M$ $H_2O_2$ in SK-N-MC cells. Pre-incubation with water extract of SMT for 2 h prevented the $H_2O_2$-induced decrease in mitochondrial transmembrane potential. SMT also attenuated the increase in caspase-3 activity and the breakdown of PARP protein caused by $H_2O_2$-induced oxidative stress. These results suggest that the water extract of SMT provides inhibition of apoptotic cell death against oxidative injury in SK-N-MC cells.

Simvastatin Induces Avian Muscle Protein Degradation through Muscle Atrophy Signaling (Simvastatin이 메추리 근육 세포에 미치는 영향)

  • JeongWoong, Park;Yu-Seung, Choi;Sarang, Choi;Sang In, Lee;Sangsu, Shin
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.265-272
    • /
    • 2022
  • Many studies on poultry have been conducted in the poultry industry to improve their important economic traits, such as egg production, meat quality, and carcass yield. Environmental changes affect the poultry's economic traits, including muscle growth. The purpose of this study is to investigate the mechanisms by which simvastatin causes muscle injury in quail muscle cells. Following treatment with various doses of simvastatin, LD50 in the quail myoblast cells was determined using a cell viability test; cell death was caused by apoptosis and/or necrosis. Thereafter, the expression patterns of the atrophy marker genes were examined via quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results showed that the transcriptional levels of the muscle atrophy marker genes (Atrogin-1, TRIM63) and the upstream genes in their signaling cascade were increased by simvastatin treatment. This indicated that simvastatin induced myogenic cell death and muscle injury via protein degradation through muscle atrophy signaling. Further studies should focus on identifying the mechanism by which simvastatin induces the protein degradation signaling pathway in quail muscle..

Peripheral Nerve Injury Alters Excitatory and Inhibitory Synaptic Transmission in Rat Spinal Cord Substantia Gelatinosa

  • Youn, Dong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.3
    • /
    • pp.143-147
    • /
    • 2005
  • Following peripheral nerve injury, excessive nociceptive inputs result in diverse physiological alterations in the spinal cord substantia gelatinosa (SG), lamina II of the dorsal horn. Here, I report the alterations of excitatory or inhibitory transmission in the SG of a rat model for neuropathic pain ('spared nerve injury'). Results from whole-cell recordings of SG neurons show that the number of distinct primary afferent fibers, identified by graded intensity of stimulation, is increased at 2 weeks after spared nerve injury. In addition, short-term depression, recognized by paired-pulse ratio of excitatory postsynaptic currents, is significantly increased, indicating the increase of glutamate release probability at primary afferent terminals. The peripheral nerve injury also increases the amplitude, but not the frequency, of spontaneous inhibitory postsynaptic currents. These data support the hypothesis that peripheral nerve injury modifies spinal pain conduction and modulation systems to develop neuropathic pain.

Management and prevention of third molar surgery-related trigeminal nerve injury: time for a rethink

  • Leung, Yiu Yan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.5
    • /
    • pp.233-240
    • /
    • 2019
  • Trigeminal nerve injury as a consequence of lower third molar surgery is a notorious complication and may affect the patient in long term. Inferior alveolar nerve (IAN) and lingual nerve (LN) injury result in different degree of neurosensory deficit and also other neurological symptoms. The long term effects may include persistent sensory loss, chronic pain and depression. It is crucial to understand the pathophysiology of the nerve injury from lower third molar surgery. Surgery remains the most promising treatment in moderate-to-severe nerve injuries. There are limitations in the current treatment methods and full recovery is not commonly achievable. It is better to prevent nerve injury than to treat with unpredictable results. Coronectomy has been proved to be effective in reducing IAN injury and carries minimal long-term morbidity. New technologies, like the roles of erythropoietin and stem cell therapy, are being investigated for neuroprotection and neural regeneration. Breakthroughs in basic and translational research are required to improve the clinical outcomes of the current treatment modalities of third molar surgery-related nerve injury.