• Title/Summary/Keyword: cell harvesting

Search Result 155, Processing Time 0.023 seconds

A Battery Charger Using Photovoltaic Energy Harvesting with MPPT Control (빛 에너지 하베스팅을 이용한 MPPT 제어 기능을 갖는 배터리 충전기)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.201-209
    • /
    • 2015
  • This paper describes a battery charger using photovoltaic energy harvesting with MPPT control. The proposed circuit harvests maximum power from a PV(photovoltaic) cell by employing MPPT(Maximum Power Point Tracking) control and charges an external battery with the harvested energy. The charging state of the battery is controlled according to the signals from a battery management circuit. The MPPT control is implemented using linear relationship between the open-circuit voltage of a PV cell and its MPP voltage such that a pilot PV cell can track the MPP of a main PV cell in real time. The proposed circuit is designed in a $0.35{\mu}m$ CMOS process technology and its functionality has been verified through extensive simulations. The maximum efficiency of the designed entire system is 86.2% and the chip area including pads is $1.35mm{\times}1.2mm$.

Energy harvesting and power management of wireless sensors for structural control applications in civil engineering

  • Casciati, Sara;Faravelli, Lucia;Chen, Zhicong
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.299-312
    • /
    • 2012
  • The authors' research efforts recently led to the development of a customized wireless control unit which receives the real-time feedbacks from the sensors, and elaborates the consequent control signal to drive the actuator(s). The controller is wireless in performing the data transmission task, i.e., it receives the signals from the sensors without the need of installing any analogue cable connection between them, but it is powered by wire. The actuator also needs to be powered by wire. In this framework, the design of a power management unit is of interest only for the wireless sensor stations, and it should be adaptable to different kind of sensor requirements in terms of voltage and power consumption. In the present paper, the power management efficiency is optimized by taking into consideration three different kinds of accelerometers, a load cell, and a non-contact laser displacement sensor. The required voltages are assumed to be provided by a power harvesting solution where the energy is stored into a capacitor.

Design of an Energy Harvesting Circuit Using Solar and Vibration Energy with MPPT Control (MPPT 제어기능을 갖는 빛과 진동 에너지를 이용한 에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Hwang, In-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.224-234
    • /
    • 2012
  • This paper describes an energy harvesting circuit using solar and vibration energy with MPPT(Maximum Power Point Tracking) control for micro sensor nodes. The designed circuit employs MPPT control to harvest maximum power available from a PZT vibration element and an integrated solar cell. The harvested energies are simultaneously combined and stored in a storage capacitor, and then managed and transferred into sensor node by PMU(Power Management Unit). MPPT controls are implemented using the linear relationship between the open-circuit voltage of an energy transducer and its MPP(Maximum Power Point) voltage. The proposed circuit is designed in a CMOS 0.18um technology and its functionality has been verified through extensive simulations. The designed energy harvesting circuit and integrated solar cell occupy $2.85mm^2$ and $8mm^2$ respectively.

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo;Oh, Jae-Buem;Roh, Soo-Gyun;Kim, Mi-Ra;Lee, Jin-Kook;Jin, Sung-Ho;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

Foaming Behavior, Structure, and Properties of Rubber Nanocomposites Foams Reinforced with Zinc Methacrylate (아연 메타아크릴레이트로 보강된 발포고무 나노복합체의 발포거동, 구조 및 특성)

  • Basuli, U.;Lee, G.B.;Jang, S.Y.;Oh, J.;Lee, J.H.;Kim, S.C.;Jeon, N.D.;Huh, Y.I.;Nah, C.
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.297-309
    • /
    • 2012
  • Different amounts of foaming agents were employed in natural rubber(NR)/butadiene rubber(BR) blends to understand the foaming behavior in presence of nano-reinforcing agent, zinc methacrylate (ZMA). The ZMA greatly improved most of the mechanical properties of the rubber foams, however it did not show considerable effect on the cell morphology, such as cell size, density and porosity. It was also observed that the foaming agent concentration affected all the mechanical parameters. When the content of foaming agent was increased, the number of foams was increased leading to a decrease in density of the compounds. But the size and distribution of foams remained unchanged with increased foaming agent. The effect of high styrene-butadiene rubber (HSBR) was also studied. The size of cells became smaller and the cell uniformity was improved with increasing HSBR. The foam rubber compounds showed much efficient energy absorbing capability at higher strains.

A Study on the Design of a Wearable Solar Energy Harvesting Device Based on Outdoor Activities (아웃도어 활동기반 웨어러블 광에너지 하베스팅 장치 디자인에 관한 연구)

  • Lee, Eunyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1224-1239
    • /
    • 2020
  • This study develops a wearable solar energy harvesting device that absorbs solar energy to generate and store power which can be used during outdoor activities by users even after dark. For this study, a prototype hat for outdoor activities at night was developed after the design of a solar energy harvesting generation, storage, and delivery system was designed that could store energy to light up LEDs. First, the main control board of the system was designed to integrate the charging function, the darkness detection circuit, the battery voltage sensing circuit, and the LED driving circuit in order to reduce bulkiness and minimize the connection structure. It was designed to increase convenience. Second, the system was designed as a wearable fashion product that connected each part with fiber bands and manufacturing it so as to be detachable from the hat. Third, charging and LED operation tests show that the battery is fully charged after 5 hours even in winter when the illuminance value is low. In addition, the LED operation experiment verified the effectiveness of a buffered system that could operate the LEDs for about 3 hours at night.

AN EXPERIMENTAL STUDY ON FAT CELL VIABLITY ACCORDING TO DIFFERENT HARVESTING TECHNIQUES (지방 채취 방법에 따른 지방 세포의 생존성에 대한 연구)

  • Lee, Won-Deok;Choi, Jin-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • Purpose: The purpose of this study is to test the efficacy of various methods of fat harvesting in animal model by viability comparison with assay including cell counting, MTT assay, and histologic evaluation. Materials and methods: New Zealand white rabbits experiments were used. Groin fat pads were subjected to different harvest method varying ingredients of solution(Experiment 1: T1 solution= lidocaine 1000mg/L, epinephrine 1mg/L, sodium bicarbonate 10mgEq/L, Triamcinolone 10mgEq/L; T2 solution=lidocaine 1000mg/L, epinephrine 1mg/L, sodium bicarbonate 0mgEq/L, Triamcinolone 0mgEq/L) and pressure exerted on harvesting with Luer-Lock syringe connected to suction cannula.(Experiment 2: P1 group=3cc intermittent pressure; P2 group=10cc sustained pressure) Fat cell viability was assessed with cell counting with a hemocytometer, MTT assay, and histologic evaluation. Results: Experiment 1 Cell count: T1=2.4/3.4/4.2, T2=9.6/8.4/7.2($\times10^5$ per mL); MTT assay: T1=0.516/0.41/0.453/0.412/0.421, T2=0.925/0.765/0.54/0.634/0.614 in 21 days(absorbance); Histology: T1 showed elongated and, different in size and shape, and ruptured adipocytes with only a few normal adipocytes whereas T2 showed central core of fat with almost intact fat cells Experiment 2 Cell count: P1=1.2/3.2/4.2, P2=1.2/2.4/3.8($\times10^5$ per mL); MTT assay:P1=0.256/0.245/0.258/0.21/0.264, P2=0.12/0.231/0.245/0.313/0.281 in 21 days(absorbance); Histology: P1 showed somewhat evenly distributed normal-looking fat cells and P2 showed relatively irregular shape of fat cells with small blood vessel amongst adiopocytes. Conclusion: Viability was higher in ‘modified tumescent solution’without sodium bicarbonate and triamcinolone and we also found no significantly different viability between using intermittent pressure and using sustained pressure. But in terms of initial viability of fat cell, we can assume that lower intermittent pressure would make better clinical results.

The Use of a Decanter for Harvesting Biomass rom plant Cell Cultures (데칸터를 이용한 텍서스속 식물세포 회수)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.337-341
    • /
    • 2000
  • The decanter is very useful to harvest biomass from plant cell cultures in large-scale process. It is very important to obtain high yield and low moisture content in recovered biomass so as to minimize solvent usage in subsequent extraction steps. Effluent clarity was also affected by the differential speed although this affect was more dramatic at higher flow rates than at lower flow rates. Moisure content was largely unaffected by flow rate. A decrease in moisture content was evident as differential speed decreased.

  • PDF

Tandem Structured Hot Electron-based Photovoltaic Cell with Double Schottky Barriers

  • Lee, Young Keun;Lee, Hyosun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.310.1-310.1
    • /
    • 2013
  • We show the novel hot electron based-solar energy conversion using tandem structured Schottky diode with double Schottky barriers. In this report, we show the effect of the double Schottky barriers on solar cell performance by enhancing both of internal photoemission and band-to-band excitation. The tandem structured Au/Si diode capped with TiO2 layer as second semiconductor exhibited improved ability for light harvesting. The proposed mechanisms consist of multiple reflections of hot electrons and additional pathway of solar energy conversion due to presence of multiple interfaces between thin gold film and semiconductors. Short-circuit photocurrent measured on the tandem structured Au/Si diodes under illumination of AM1.5 increased by approximately 70% from 3.1% to 5.3% and overall incident photon to electron conversion efficiency (IPCE) was enhanced in visible light, revealing that the concept of the double Schottky barriers have significant potential as novel strategy for light harvesting.

  • PDF

Micropower energy harvesting using high-efficiency indoor organic photovoltaics for self-powered sensor systems

  • Biswas, Swarup;Lee, Yongju;Kim, Hyeok
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.364-368
    • /
    • 2021
  • We developed a highly efficient organic photovoltaic (OPV) cell with a poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]:[6,6]-phenyl-C71-butyric acid methyl ester active layer for harvesting lower-intensity indoor light energy to power various self-powered sensor systems that require power in the microwatt range. In order to achieve higher power conversion efficiency (PCE), we first optimized the thickness of the active layer of the OPV cell through optical simulations. Next, we fabricated an OPV cell with optimized active layer thickness. The device exhibited a PCE of 12.23%, open circuit voltage of 0.66 V, short-circuit current density of 97.7 ㎂/cm2, and fill factor of 60.53%. Furthermore, the device showed a maximum power density of 45 ㎼/cm2, which is suitable for powering a low-power (microwatt range) sensor system.