Browse > Article
http://dx.doi.org/10.7473/EC.2012.47.4.297

Foaming Behavior, Structure, and Properties of Rubber Nanocomposites Foams Reinforced with Zinc Methacrylate  

Basuli, U. (Energy Harvesting WCU Research Team)
Lee, G.B. (Energy Harvesting WCU Research Team)
Jang, S.Y. (BIN Fusion Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University)
Oh, J. (Energy Harvesting WCU Research Team)
Lee, J.H. (Energy Harvesting WCU Research Team)
Kim, S.C. (TaeSung Polytec Co., Ltd.)
Jeon, N.D. (TaeSung Polytec Co., Ltd.)
Huh, Y.I. (Department of Polymer and Fiber System Engineering, Chonnam National University)
Nah, C. (Energy Harvesting WCU Research Team)
Publication Information
Elastomers and Composites / v.47, no.4, 2012 , pp. 297-309 More about this Journal
Abstract
Different amounts of foaming agents were employed in natural rubber(NR)/butadiene rubber(BR) blends to understand the foaming behavior in presence of nano-reinforcing agent, zinc methacrylate (ZMA). The ZMA greatly improved most of the mechanical properties of the rubber foams, however it did not show considerable effect on the cell morphology, such as cell size, density and porosity. It was also observed that the foaming agent concentration affected all the mechanical parameters. When the content of foaming agent was increased, the number of foams was increased leading to a decrease in density of the compounds. But the size and distribution of foams remained unchanged with increased foaming agent. The effect of high styrene-butadiene rubber (HSBR) was also studied. The size of cells became smaller and the cell uniformity was improved with increasing HSBR. The foam rubber compounds showed much efficient energy absorbing capability at higher strains.
Keywords
foam; zinc metharylate (ZMA); rubber; nano-reinforcing agent; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Y. Lu, L. Liu, D. Shen, C. Yang, and L. Zhang, "Infrared study on in situ polymerization of zinc dimethacrylate in poly (${\alpha}$-octylene-co-ethylene) elastomer", Polym. Int., 53, 802 (2004).   DOI   ScienceOn
2 Y. Lu, L. Liu, M. Tian, H. Geng, and L. Zhang, "Study on mechanical properties of elastomers reinforced by zinc dimethacrylate", Eur. Polym. J., 41, 589 (2005).   DOI   ScienceOn
3 A. Du, Z. Peng, Y. Zhang, and Y. Zhang, " Polymerization conversion and structure of magnesium methacrylate in ethylene- vinyl acetate rubber vulcanizates", J. Appl. Polym. Sci., 93, 2379 (2004).   DOI   ScienceOn
4 W. S. Jin, H. S. Lee, and C. Nah, "Preparation and physical properties of acrylonitrile-butadiene rubber nanocomposites filled with zinc dimethacrylate", Polymer (Korea), 28, 185 (2004).   과학기술학회마을
5 J. H. Won, H. S. Joo, and Y. W. Chang, "Preparation and Properties of EPDM/Zinc Methacrylate Hybrid Composites", Elastomer, 40, 59 (2005).   과학기술학회마을
6 Z. Peng, X. Liang, Y. Zhang and Y. Zhang, "Reinforcement of EPDM by in situ prepared zinc dimethacrylate", J. Appl. Polym. Sci., 84, 1339 (2002).   DOI   ScienceOn
7 X. Yuan, Z. Peng, Y. Zhang, and Y. Zhang, "In situ preparation of zinc salts of unsaturated carboxylic acids to reinforce NBR", J. Appl. Polym. Sci., 77, 2740 (2000).   DOI
8 X. Yuan, Y. Zhang, Z. Peng, and Y. Zhang, "In situ preparation of magnesium methacrylate to reinforce NBR", J. Appl. Polym. Sci., 84, 1403 (2002).   DOI   ScienceOn
9 A. Du, Z. Peng, Y. Zhang, and Y. Zhang, "Polymerization conversion and structure of magnesium methacrylate in ethylene- vinyl acetate rubber vulcanizates", J. Appl. Polym. Sci., 93, 2379 (2004).   DOI   ScienceOn
10 T. Ikeda, S. Sakurai, K. Nakano, and B. Yamada, "Copolymerization of zinc methacrylate and perfluoroalkyl acrylate in hydrocarbon medium", J. Appl. Polym. Sci., 59, 781 (1996).   DOI
11 T. Ikeda and B. Yamada, "Simulation of the in situ copolymerization of zinc methacrylate and 2-(N-ethylperfluoro-octanesulphonamido) ethyl acrylate in hydrogenated nitrile-butadiene rubber", Polym. Int., 48, 367 (1999).   DOI
12 K. Horiuchi and A. Hamada, "Golf ball", Europe Patent, 0,582,487 A1, September 2, 1994.
13 D. S. Granatowicz, M. T. Morris, M. V. Pilkington, and G. R. Tompkin, "High modulus belt compostion and belts made therewith", Europe Patent, 0,864,607 A1, September 16, 1998.
14 Y. Keisaku, I. Kiyoshi, and K. Junichi, "Rubber composition", Europe Patent, 0,589,701 A1, March 30, 1994.
15 R. M. Freeman, W. L. Hergenrother, and F. J. Ravagnani, "High modulus low hysteresis rubber compound for pneumatic tires", US Patent, 5,464,899 A, November 7, 1995.
16 Z. M. Ariff, Z. Zakaria, L. H. Tay, and S. Y. Lee, "Effect of foaming temperature and rubber grades on properties of natural rubber foams", J. Appl. Polym. Sci., 107, 2531 (2008).   DOI   ScienceOn
17 J. H. Kim, K. C. Choi, J. M. Yoon, and S. Y. Kim, "Effects of Foaming temperature and carbon black content on the cure behaviors and foaming characteristics of the natural rubber foams", Elastomer, 41, 147 (2006).   과학기술학회마을
18 E. S. Park, "Mechanical properties and antibacterial activity of peroxide-cured silicone rubber foams", J. Appl. Polym. Sci., 110, 1723 (2008).   DOI   ScienceOn
19 G. Li and M. John, "A Crumb Rubber Modified Syntactic Foam", Mater. Sci. Eng. A, 474, 390 (2008).   DOI   ScienceOn
20 G. Li and N. Jones, "Development of Rubberized Syntactic Foam", Composites Part A, 38, 1483 (2007).   DOI   ScienceOn
21 R. Maharsia, N. Gupta, and H. D. Jerro, "Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams", Mater. Sci. Eng. A, 417, 249 (2006).   DOI   ScienceOn
22 J. H. Kim, K. C. Choi, and J. M. Yoon, "The Foaming Characteristics and Physical Properties of Natural Rubber Foams: Effects of Carbon Black Content and Foaming Pressure", J. Ind. Eng. Chem., 12, 795 (2006).   과학기술학회마을
23 H. Jin, W. Y. Lu, S. Scheffel, M. K. Neilsen, and T. D. Hinnerichs, "Characterization of Mechanical Behavior of Polyurethane Foams using Digital Image Correlation", 2005 ASME International Mechanical Engineering Congress & Exposition, Nov. 5-11, Orlando, FL, USA.
24 Z. Xiao, R. Guan, Y. Jiang, and Y. Li, "Tensile property of thin microcellular PC sheets prepared by compression molding", eXPRESS Polym. Lett., 1, 217 (2007).   DOI
25 S. M. Kang, S. J. Lee, and B. K. Kim, "Shape memory polyurethane foams", eXPRESS Polym. Lett., 6, 63 (2012).   DOI
26 Z. Wang and T. J. Pinnavaia, "Nanolayer reinforcement of elastomeric polyurethane", Chem. Mater., 10, 3769 (1998).   DOI   ScienceOn
27 J. H. Chang and Y. U. An, "Nanocomposites of polyurethane with various organoclays: thermomechanical properties, morphology, and gas permeability", J. Polym. Sci. Part B Polym. Phys., 40, 670 (2002).   DOI   ScienceOn
28 Y. I. Tien and K. H. Wei, "High-tensile-property layered silicates/ polyurethane nanocomposites by using reactive silicates as pseudo chain extenders", Macromolecules, 34, 9045 (2001).   DOI   ScienceOn
29 X. Cao, L. J. Lee, T. Widya, and C. Macosko, "Polyurethane/ clay nanocomposites foams: processing, structure and properties", Polymer, 46, 775 (2005).   DOI   ScienceOn
30 T. K. Chen, Y. I. Tien, and K. H. Wei, "Synthesis and characterization of novel segmented polyurethane/clay nanocomposites", Polymer, 41, 1345 (2000).   DOI   ScienceOn
31 Y. Lu, L. Liu, D. Shen, C. Yang, and L. Zhang, "Infrared study on in situ polymerization of zinc dimethacrylate in poly (${\alpha}$-octylene-co-ethylene) elastomer", Polym. Int., 53, 802 (2004).   DOI   ScienceOn
32 Z. Peng, X. Liang, Y. Zhang, and Y. Zhang, "Reinforcement of EPDM by in situ prepared zinc dimethacrylate", J. Appl. Polym. Sci., 84, 1339 (2002).   DOI   ScienceOn
33 H. D. Chae, U. Basuli, J. H. Lee, C. I. Lim, R. H. Lee, S. C. Kim, N. D. Jeon, and C. Nah, "Study on Mechanical and Thermal Properties of Rubber Composites Reinforced by Zinc Methacrylate and Carbon Black", Polym. Compos., 2012, DOI 10.1002/pc.22242.   DOI   ScienceOn
34 S. Kaang, W. Jin, M. A. Kader, C. Nah, "Effects of blend composition and mixing method on mechanical and morphological properties of zinc dimethacrylate-reinforced acrylonitrile- butadiene copolymer nanocomposites.", Polym. Plast. Technol., 43, 1517 (2004).
35 W. S. Kim, W. D. Kim, and S. I. Hong, "Fatigue life prediction of automotive rubber component subjected to a variable amplitude loading", Elastomer, 42, 209 (2007).   과학기술학회마을
36 C. Park and S. R. Nutt, "PM synthesis and properties of steel foams", Mater. Sci. Eng. A, 288, 111 (2000).   DOI   ScienceOn
37 T. Mukai, H. Kanahashi, T. Miyoshi, M. Mabuchi, T. G. Nieh, and K. Higashi, "Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading", Scripta Mater., 40, 921 (1999).   DOI   ScienceOn
38 J. I. Velasco, M. Antunes, O. Ayyad, J. M. Lopez-Cuesta, P. Gaudon, C. Saiz-Arroyo, M. A. Rodriguez-Perez, and J. A. de Saja, "Foaming behaviour and cellular structure of LDPE/hectorite nanocomposites", Polymer, 48, 2098 (2007).   DOI   ScienceOn
39 C. J. Yu, H. H. Eiferet, J. Banhart, and J. Baumeister, "Metal foams", Adv. Mater. Processes, 11, 45 (1998).
40 M. A. Rodriguez-Perez, "Crosslinked polyolefin foams: production, structure, properties, and applications", Adv. Polym. Sci., 184, 97 (2005).   DOI
41 M. Antunes, V. Realinho, and J. I. Velasco, "Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams", J. Nanomater., doi:10.1155/2010/306384 (2010).   DOI   ScienceOn
42 L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, and G. Xu, "Polymer nanocomposite foams", Compos. Sci. Technol., 65, 2344 (2005).   DOI   ScienceOn
43 M. Antunes, V. Realinho, and J. I. Velasco, "Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams", J. Nanomater., 2010, 1 (2010).
44 C. Zeng, X. Han, L. J. Lee, K. W. Koelling, and D. L. Tomasko, "Polymer-clay nanocomposite foams prepared using carbon dioxide", Adv. Mater., 15, 1743 (2003).   DOI   ScienceOn
45 Y. Di, S. Iannace, E. Di Maio, and L. Nicolais, " Poly(lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing", J. Polym. Sci. B, 43, 689 (2005).   DOI   ScienceOn
46 H. M. Da Costa, L. L. Y. Visconte, R. C. R. Nunes, and C. R. G. Furtado, "Use of Rice Husk Ash as Filler in Natural Rubber Vulcanizate: In comparison with Other Commercial Fillers", J. Appl. Polym. Sci., 83, 2331 (2002).   DOI   ScienceOn
47 X. Han, C. Zeng, L. J. Lee, K. W. Koelling, and D. L. Tomasko, "Extrusion of polystyrene nanocomposite foams with supercritical $CO_{2}$", Polym. Eng. Sci., 43, 1261 (2003).   DOI   ScienceOn
48 M. Okamoto, P. H. Nam, P. Maiti, T. Kotaka, T. Nakayama, M. Takada, M. Ohshima, A. Usuki, N. Hasegawa, and H. Okamoto, "Biaxial flowinduced alignment of silicate layers in polypropylene/clay nanocomposite foam", Nano Lett., 1, 503 (2001).   DOI   ScienceOn
49 A. E. Lawindy, K. M. A. El-Kade, W. E. Mahmoud, and H. H. Hassan, "Physical studies of foamed reinforced rubber composites Part I. Mechanical properties of foamed ethylene propylene-diene terpolymer and nitrile-butadiene rubber composites", Polym. Int., 51, 601 (2002).   DOI   ScienceOn
50 P. L. The, Z. A. Mohd Ishak, A. S. Hashim, J. Karger-Kocsis, and U. S. Ishiaku, "On the potential of organoclay with respect to conventional fillers (carbon black, silica) for epoxidized natural rubber compatibilized natural rubber vulcanizates", J. Appl. Polym. Sci., 94, 2438 (2004).   DOI   ScienceOn
51 N. Nagata, T. Sato, T. Fujii, and Y. Saito, "Structure and mechanical properties of hydrogenated NBR/zinc dimethacrylate vulcanizates", J. Appl. Polym. Sci. symp., 53, 103 (1994).
52 Y. Lu, L. Liu, C. Yang, M. Tian, and L. Zhang, "The morphology of zinc dimethacrylate reinforced elastomers investigated by SEM and TEM", Eur. Polym. J., 41, 577 (2005).   DOI   ScienceOn
53 J. W. Lee, H. S. Joo, S. C. Kang, and Y. W. Chang, "Effect of zinc dimethacrylate on mechanical properties of dynamically vulcanized polypropylene(PP) and nitrile rubber(NBR) blends", Elastomer, 41, 245 (2006).   과학기술학회마을