• 제목/요약/키워드: cell growth, motility

검색결과 74건 처리시간 0.027초

곤충세포 배지로부터 히스티딘이 융합된 Autotaxin(NPP-2)의 발현, 분비 및 정제 (Expression, Secretion and Purification of Histidine-Tagged Autotaxin (NPP2) from Insect Cells Media)

  • 이종한;송재휘;이종흔;안영민;김수영;이석형;박원상;유남진;홍성렬
    • 약학회지
    • /
    • 제47권6호
    • /
    • pp.410-416
    • /
    • 2003
  • Autotaxin(ATX) was originally purified from conditioned media of A2058 human melanoma cells and shown to be a potent cell motility-stimulating factor, possessing a type II nucleotide pyrophosphatase/phosphodiesterase (NPP2) activity. Recombinant ATX has recently demonstrated that human plasma lysophosholipase D is identical to ATX and uses lysophosphatidylcholine as a substrate to mediate various biological functions including tumor cell growth and motility through G-protein coupled receptor. However, despite pivotal roles of ATX on physiological or pathophysiological states, the production of ATX is solely depends on complicated purification method which employs multiple column steps, but resulted in very poor yield. This limited the use of ATX for extensive analysis. We, therefore, expressed six histidine-tagged recombinant human ATX(His-ATX) in High Five TM insect cells to improve the generation of ATX and to make simple the purification of ATX. The signal sequence of the human ATX gene was truncated and replaced with sequence of insect cell secretion signal within expression vector. In addition, codons for six histidines were added to the C-termini of 120kDa ATX cDNA construct. A simple purification scheme utilizing two-step affinity column chromatography was designed to purify His-ATX to homogeneity from the culture supernatant of transfected insect cells. Homogenous His-ATX was detected and isolated from the concentrated insect cell medium using concanavalin A agarose and nickel affinity chromatography. Purified His-ATX was in full length with ATX capacity. A combination of this expression system and purification scheme would be useful for production and purification of high-quality functional ATX for research and practical application of multiple functional motogen, ATX/NPP-2.

Src Redox Regulation: There Is More Than Meets the Eye

  • Chiarugi, Paola
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.329-337
    • /
    • 2008
  • Src-family kinases are critically involved in the control of cytoskeleton organization and in the generation of integrin-dependent signaling responses, inducing tyrosine phosphorylation of many signaling and cytoskeletal proteins. Activity of the Src family of tyrosine kinases is tightly controlled by inhibitory phosphorylation of a carboxy-terminal tyrosine residue, inducing an inactive conformation through binding with its SH2 domain. Dephosphorylation of C-ter tyrosine, as well as its deletion of substitution with phenylalanine in oncogenic Src kinases, leads to autophosphorylation at a tyrosine in the activation loop, thereby leading to enhanced Src activity. Beside this phophorylation/dephosphorylation circuitry, cysteine oxidation has been recently reported as a further mechanism of enzyme activation. Mounting evidence describes Src activation via its redox regulation as a key outcome in several circumstances, including growth factor and cytokines signaling, integrin-mediated cell adhesion and motility, membrane receptor cross-talk as well in cell transformation and tumor progression. Among the plethora of data involving Src kinase in physiological and pathophysiological processes, this review will give emphasis to the redox component of the regulation of this master kinase.

Metastasis-associated Factors Facilitating the Progression of Colorectal Cancer

  • Zhang, Yao-Yao;Chen, Bin;Ding, Yan-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2437-2444
    • /
    • 2012
  • Tumor metastasis remains the principal cause of treatment failure and poor prognosis in patients with colorectal cancer. It is a multistage process which includes proteolysis, motility and migration of cells, proliferation in a new site, and neoangiogenesis. A crucial step in the process of intra- and extra-vasation is the activation of proteolytic enzymes capable of degrading the extracellular matrix (ECM). In this stage, urokinase plasminogen activator receptor (uPAR) and matrix metalloproteinases (MMPs) are necessary. Micrometastases need the presence of growth factor and vascular growth factor so that they can form macrometastasis. In addition, cell adhesion molecules (CAMs) and guanine nucleotide exchange factors (GEFs) play important roles in the progression of colorectal cancer and metastatic migration. Further elucidation of the mechanisms of how these molecules contribute will aid in the identification of diagnostic and prognostic markers as well as therapeutic targets for patients with colorectal metastasis.

Transforming Growth Factor-$\beta$ (TGF-$\beta$) Induces Invasion and Migration of MCF10A Human Breast Epithelial Cells

  • Kim, Eun-Sook;Kim, Mi-Sung;Aree Moon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.142-142
    • /
    • 2003
  • Transforming growth factor (TGF)-${\beta}$, a hormonally active polypeptide found in normal and transformed tissue, is a potent regulator of cell growth and differentiation. In this study, we examined the effect of TGF-${\beta}$ on invasion and motility of MCF10A human breast epithelial cells. TGF-${\beta}$ induced migration and invasive phenotype of the parental MCF10A cells in a dose-dependent manner.(omitted)

  • PDF

Transforming Growth Factor-$\beta$ (TGF)-$\beta$, Induces Invasion and Migration of MCF10A Human Breast Epithelial Cells

  • Kim, Eun-Sook;Kim, Mi-Sung;Moon, Aree
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.165.1-165.1
    • /
    • 2003
  • Transforming growth factor (TGF)-$\beta$, a hormonally active polypeptide found in normal and transformed tissue, is a potent regulator of cell growth and differentiation. In this study, we examined the effect of TGF-$\beta$ on invasion and motility of MCF10A human breast epithelial cells. TGF-$\beta$-induced migration and invasive phenotype of the parental MCF10A cells in a dose-dependent manner. Activity of MMP-2 promoter was increased by TGF-b, suggesting that the TGF-$\beta$-induced invasive phenotype may possibly be mediated by MMP-2 rather than MMP-9. (omitted)

  • PDF

Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells

  • Ryu, Dayoung;Ryoo, In-geun;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.487-493
    • /
    • 2018
  • Cluster of differentiation 44 (CD44), a cell surface receptor for hyaluronic acid (HA), is involved in aggressive cancer phenotypes. Herein, we investigated the role of the CD44 standard isoform (CD44s) in hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) regulation using MCF7 overexpressing CD44s (pCD44s-MCF7). When pCD44s-MCF7 was incubated under hypoxia, levels of $HIF-1{\alpha}$, vascular endothelial growth factor, and the $HIF-1{\alpha}$ response element-derived luciferase activity were significantly increased compared to those in the control MCF7. Incubation of pCD44s-MCF7 cells with HA further increased $HIF-1{\alpha}$ accumulation, and the silencing of CD44s attenuated $HIF-1{\alpha}$ elevation, which verifies the role of CD44s in $HIF-1{\alpha}$ regulation. In addition, the levels of phosphorylated extracellular signal-regulated kinase (ERK) was higher in hypoxic pCD44s-MCF7 cells, and $HIF-1{\alpha}$ accumulation was diminished by the pharmacological inhibitors of ERK. CD44s-mediated $HIF-1{\alpha}$ augmentation resulted in two functional outcomes. First, pCD44s-MCF7 cells showed facilitated cell motility under hypoxia via the upregulation of proteins associated with epithelial-mesenchymal transition, such as SNAIL1 and ZEB1. Second, pCD44s-MCF7 cells exhibited higher levels of glycolytic proteins, such as glucose transporter-1, and produced higher levels of lactate under hypoxa. As a consequence of the enhanced glycolytic adaptation to hypoxia, pCD44s-MCF7 cells exhibited a higher rate of cell survival under hypoxia than that of the control MCF7, and glucose deprivation abolished these differential responses of the two cell lines. Taken together, these results suggest that CD44s activates hypoxia-inducible $HIF-1{\alpha}$ signaling via ERK pathway, and the $CD44s-ERK-HIF-1{\alpha}$ pathway is involved in facilitated cancer cell viability and motility under hypoxic conditions.

Inhibitory Effects of Cyrtopodion scabrum Extract on Growth of Human Breast and Colorectal Cancer Cells

  • Amiri, Ahmad;Namavari, Mehdi;Rashidi, Mojtaba;Fahmidehkar, Mohammad Ali;Seghatoleslam, Atefeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.565-570
    • /
    • 2015
  • Breast and colorectal cancers rank high in Iran as causes of mortality. Most of the current treatments are expensive and non-specific. The potential anticancer properties of common home gecko, Cyrtopodion scabrum, were investigated in this study. The effects of C. scabrum extract on proliferation, viability and migration of the colorectal cancer (SW-742), breast cancer (MCF-7) and normal (MSC) cell lines were investigated using MTT and in vitro wound healing assay. $IC_{50}$ values calculated for the extract were $559{\pm}28.9{\mu}g/mL$ for MCF-7 and $339{\pm}11.3{\mu}g/mL$ for SW-742. No toxic effects on the normal control cells were observed. MCF-7 and SW-742 cell growth was inhibited by 32.6% and 62%, under optimum conditions, compared to the untreated control cells. The extract also decreased the motility and migration ability of both cancer cell lines, with no significant effects on the normal control cells. Data suggest C. scabrum extract as a useful natural resource for targeting cancer cells specifically.

Effect of Fibroblast Growth Factor-2 on Migration and Proteinases Secretion of Human Umbilical Vein Endothelial Cells

  • Oh, In-Suk;Kim, Hwan-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.379-384
    • /
    • 2004
  • Fibroblast growth factor-2 (FGF-2) is known to modulate numerous cellular functions in various cell types, including cell proliferation, differentiation, survival, adhesion, migration, and motility, and also in processes such as wound healing, angiogenesis, and vasculogenesis. FGF-2 regulates the expression of several molecules thought to mediate critical steps during angiogenesis. This study examines the mechanisms underlying FGF-2-induced cell migration, using human umbilical vein endothelial cells (HUVECs). FGF-2 induced the nondirectional and directional migration of endothelial cells, which are inhibited by MMPs and plasmin inhibitors, and induced the secretion of matrix metalloproteinase-3 (MMP3) and MMP-9, but not MMP-l and MMP-2. FGF-2 also induced the secretion of the tissue inhibitor of metalloproteinase-l (TIMP-I), but not of TIMP- 2. Also, the pan-PKC inhibitor inhibited FGF-2-induced MMP-9 secretion. It is, therefore, suggested that FGF-2 induces the migration of cultured endothelial cells by means of increased MMPs and plasmin secretion. Furthermore, FGF-2 may increase MMP-9 secretion by activating the PKC pathway.

Isolation and Characterization of Purple Non-Sulfur Bacteria, Afifella marina, Producing Large Amount of Carotenoids from Mangrove Microhabitats

  • Soon, Tan Kar;Al-Azad, Sujjat;Ransangan, Julian
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권8호
    • /
    • pp.1034-1043
    • /
    • 2014
  • This study determined the effect of light intensity and photoperiod on the dry cell weight and total amount of carotenoids in four isolates of purple non-sulfur bacteria obtained from shaded and exposed microhabitats of a mangrove ecosystem in Kota Kinabalu, Sabah, Malaysia. The initial isolation of the bacteria was carried out using synthetic 112 medium under anaerobic conditions (2.5 klx) at $30{\pm}2^{\circ}C$. On the basis of colony appearance, cell morphology, gram staining, motility test, and 16S rRNA gene sequencing analyses, all four bacteria were identified as Afifella marina. One of the bacterial isolates, designated as Af. marina strain ME, which was extracted from an exposed mud habitat within the mangrove ecosystem, showed the highest yield in dry cell weight ($4.32{\pm}0.03g/l$) as well as total carotenoids ($0.783{\pm}0.002mg/g$ dry cell weight). These values were significantly higher than those for dry cell weight ($3.77{\pm}0.02g/l$) and total carotenoid content ($0.706{\pm}0.008mg/g$) produced by the isolates from shaded habitats. Further analysis of the effect of 10 levels of light intensity on the growth characteristics of Af. marina strain ME showed that the optimum production of dry cell weight and total carotenoids was achieved at different light intensities and incubation periods. The bacterium produced the highest dry cell weight of 4.98 g/l at 3 klx in 72 h incubation, but the carotenoid production of 0.783 mg/g was achieved at 2.5 klx in 48 h incubation. Subsequent analysis of the effect of photoperiod on the production of dry cell weight and total carotenoids at optimum light intensities (3 and 2.5 klx, respectively) revealed that 18 and 24 h were the optimum photoperiods for the production of dry cell weight and total carotenoids, respectively. The unique growth characteristics of the Af. marina strain ME can be exploited for biotechnology applications.

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal;Tepekoy, Filiz;Yilmaz, Irem;Subasi, Cansu;Kabatas, Serdar
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권2호
    • /
    • pp.153-165
    • /
    • 2019
  • Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.