• Title/Summary/Keyword: cell envelope

Search Result 164, Processing Time 0.019 seconds

Antimicrobial Effects of Chitosans on Escherichia coli 0157 : H7, Staphyloccus aureus and Candida of albicans (Escherichia coli O157 : H7, Staphyloccus aureus 및 Candida albicans에 대한 키토산의 항균 효과)

  • Oh, Se-Wook;Hong, Sang-Pill;Kim, Hyun-Jung;Choi, Yong-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.218-224
    • /
    • 2000
  • The antimicrobial activities of chitosan oligosaccharide(chitohexaose) and two types of chitosans M.W.(10,000 and M.W. 100,000) were examined against Escherichia coli O157 : H7(ATCC 43894), Staphylococcus aureus(ATCC 144458) and Candida albicans(KFRI 432). Chitosan with molecular weight of 10,000 showed the strongest antimicrobial activities to E. coil O157 : H7 and S. aureus, whereas chitohexaose acted most strongly against C. albicans. The most effective concentration of chitosan was measured to be 0.1 mg/mL for E. coil O157 : H7 and S. aureus, and that of chitohexaose to be 1 mg/mL for C. albicans. Antimicrobial activities of chitosans and chitohexaose were maintained for 60 min after their treatment. They were found to induce leakage of intracellular proteins and nucleic acids from treated microorganisms. The efflux determined by assaying the ${\beta}-galactosidase$ leaked from the lactose-induced E. coli O157 : H7 cells was observed to reach the highest level within 60 min after treatment with the antimicrobial agents and chitosan with 10,000 molecular weight gave the highest ${\beta}-galactosidase$ activity. Therefore, it is supposed that the antimicrobial activity of chitosan with its unique polycationic nature might be caused by its binding to anionic component(s) of the cell envelope and thereby inhibiting the membrane metabolism and/or leaking intracellular materials.

  • PDF

Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea

  • Jeong, Hae Jin;Jang, Se Hyeon;Moestrup, Ojvind;Kang, Nam Seon;Lee, Sung Yeon;Potvin, Eric;Noh, Jae Hoon
    • ALGAE
    • /
    • v.29 no.2
    • /
    • pp.75-99
    • /
    • 2014
  • A small dinoflagellate, Ansanella granifera gen. et sp. nov., was isolated from estuarine and marine waters, and examined by light microscopy, scanning electron microscopy, and transmission electron microscopy. In addition, the identity of the sequences (3,663-bp product) of the small subunit (SSU), internal transcribed spacer (ITS) region (ITS1, 5.8S, ITS2), and D1-D3 large subunit (LSU) rDNA were determined. This newly isolated, thin-walled dinoflagellate has a type E eyespot and a single elongated apical vesicle, and it is closely related to species belonging to the family Suessiaceae. A. granifera has 10-14 horizontal rows of amphiesmal vesicles, comparable to Biecheleria spp. and Biecheleriopsis adriatica, but greater in number than in other species of the family Suessiaceae. Unlike Biecheleria spp. and B. adriatica, A. granifera has grana-like thylakoids. Further, A. granifera lacks a nuclear fibrous connective, which is present in B. adriatica. B. adriatica and A. granifera also show a morphological difference in the shape of the margin of the cingulum. In A. granifera, the cingular margin formed a zigzag line, and in B. adriatica a straight line, especially on the dorsal side of the cell. The episome is conical with a round apex, whereas the hyposome is trapezoidal. Cells growing photosynthetically are $10.0-15.0{\mu}m$ long and $8.5-12.4{\mu}m$ wide. The cingulum is descending, the two ends displaced about its own width. Cells of A. granifera contain 5-8 peripheral chloroplasts, stalked pyrenoids, and a pusule system, but lack nuclear envelope chambers, a nuclear fibrous connective, lamellar body, rhizocysts, and a peduncle. The main accessory pigment is peridinin. The SSU, ITS regions, and D1-D3 LSU rDNA sequences differ by 1.2-7.4%, >8.8%, and >2.5%, respectively, from those of the other known genera in the order Suessiales. Moreover, the SSU rDNA sequence differed by 1-2% from that of the three most closely related species, Polarella glacialis, Pelagodinium bei, and Protodinium simplex. In addition, the ITS1-5.8S-ITS2 rDNA sequence differed by 16-19% from that of the three most closely related species, Gymnodinium corii, Pr. simplex, and Pel. bei, and the LSU rDNA sequence differed by 3-4% from that of the three most closely related species, Protodinium sp. CCMP419, B. adriatica, and Gymnodinium sp. CCMP425. A. granifera had a 51-base pair fragment in domain D2 of the large subunit of ribosomal DNA, which is absent in the genus Biecheleria. In the phylogenetic tree based on the SSU and LSU sequences, A. granifera is located in the large clade of the family Suessiaceae, but it forms an independent clade.

Coronaviruses: SARS, MERS and COVID-19 (코로나바이러스: 사스, 메르스 그리고 코비드-19)

  • Kim, Eun-Joong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.297-309
    • /
    • 2020
  • Coronaviruses were originally discovered as enzootic infections that limited to their natural animal hosts, but some strains have since crossed the animal-human species barrier and progressed to establish zoonotic diseases. Accordingly, cross-species barrier jumps resulted in the appearance of SARS-CoV, MERS-CoV, and SARS-CoV-2 that manifest as virulent human viruses. Coronaviruses contain four main structural proteins: spike, membrane, envelope, and nucleocapsid protein. The replication cycle is as follows: cell entry, genome translation, replication, assembly, and release. They were not considered highly pathogenic to humans until the outbreaks of SARS-CoV in 2002 in Guangdong province, China. The consequent outbreak of SARS in 2002 led to an epidemic with 8,422 cases, and a reported worldwide mortality rate of 11%. MERS-CoVs is highly related to camel CoVs. In 2019, a cluster of patients infected with 2019-nCoV was identified in an outbreak in Wuhan, China, and soon spread worldwide. 2019-nCoV is transmitted through the respiratory tract and then induced pneumonia. Molecular diagnosis based on upper respiratory region swabs is used for confirmation of this virus. This review examines the structure and genomic makeup of the viruses as well as the life cycle, diagnosis, and potential therapy.

Evaluation of Viral Inactivation Efficacy of a Continuous Flow Ultraviolet-C Reactor (UVivatec) (연속 유동 Ultraviolet-C 반응기(UVivatec)의 바이러스 불활화 효과 평가)

  • Bae, Jung-Eun;Jeong, Eun-Kyo;Lee, Jae-Il;Lee, Jeong-Im;Kim, In-Seop;Kim, Jong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.377-382
    • /
    • 2009
  • Viral safety is an important prerequisite for clinical preparations of all biopharmaceuticals derived from plasma, cell lines, or tissues of human or animal origin. To ensure the safety, implementation of multiple viral clearance (inactivation and/or removal) steps has been highly recommended for manufacturing of biopharmaceuticals. Of the possible viral clearance strategies, Ultraviolet-C (UVC) irradiation has been known as an effective viral inactivating method. However it has been dismissed by biopharmaceutical industry as a result of the potential for protein damage and the difficulty in delivering uniform doses. Recently a continuous flow UVC reactor (UVivatec) was developed to provide highly efficient mixing and maximize virus exposure to the UV light. In order to investigate the effectiveness of UVivatec to inactivate viruses without causing significant protein damage, the feasibility of the UVC irradiation process was studied with a commercial therapeutic protein. Recovery yield in the optimized condition of $3,000\;J/m^2$ irradiation was more than 98%. The efficacy and robustness of the UVC reactor was evaluated with regard to the inactivation of human immunodeficiency virus (HIV), hepatitis A virus (HAV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), porcine parvovirus (PPV), bovine parvovirus (BPV), minute virus of mice (MVM), reovirus type 3 (REO), and bovine parainfluenza virus type 3 (BPIV). Non enveloped viruses (HAV, PPV, BPV, MVM, and REO) were completely inactivated to undetectable levels by $3,000\;J/m^2$ irradiation. Enveloped viruses such as HIV, BVDV, and BPIV were completely inactivated to undetectable levels. However BHV was incompletely inactivated with slight residual infectivity remaining even after $3,000\;J/m^2$ irradiation. The log reduction factors achieved by UVC irradiation were ${\geq}3.89$ for HIV, ${\geq}5.27$ for HAV, 5.29 for BHV, ${\geq}5.96$ for BVDV, ${\geq}4.37$ for PPV, ${\geq}3.55$ for BPV, ${\geq}3.51$ for MVM, ${\geq}4.20$ for REO, and ${\geq}4.15$ for BPIV. These results indicate that UVC irradiation using UVivatec was very effective and robust in inactivating all the viruses tested.